
Object’ive www.object-ive.com DirectJava

DirectJava®

Automated Smalltalk to Java Migration Solution

Olivier Picot (CEO, Object’ive)

Fabrice Le Calvez (Sales Manager, Object’ive)

October 24th, London JSIG

Object’ive www.object-ive.com DirectJava

Program

1. Why Migrate ?
2. Differences between Java & Smalltalk
3. DirectJava : a 4-Step Translation Process
4. Code Translation Examples
5. Case Study

Object’ive www.object-ive.com DirectJava

Who is Object’ive ?

• Founded in January 1999, staff of 12, 1 M€ turnover.
• Main technical skills : Java, Smalltalk, customised solutions.
• Areas of expertise : Migration, B2B & B2C Solutions, Mobility, eLearning

• References: mostly large corporates e.g.,
– CCR: Caisse Centrale de Réassurance (largest re-insurer in France)
– EDF: Electricité De France: largest eletricity utility company in France, 4- million

customers in 24 countries
– Veolia Water: largest water supply company in the world, 13 b€ turnover

Object’ive www.object-ive.com DirectJava

Factors Driving Migration

SMALLTALK
• Vendor support services (Fear – Uncertainty – Doubt)
• Standardization decisions
• Expert Staffing Shortages
• Run-Time / Maintenance Expenses

JAVA
• Vendor Independent
• Vibrant Developers’ Community , available software components
• Connectivity, Web-enablement, Mobility
• Distributed applications
• Fast development time
• Cost

Object’ive www.object-ive.com DirectJava

Migration Components

• A Migration Project includes several parts such as:
– Framework Migration
– Views Migration
– Functionality Migration
– Other parts (Communication protocols, security, …etc)

• Focus today: functionality migration & automation of language
translation.

• Architecture and design issues :we will concentrate on these when
translation choices, and the use of DirectJava has an impact on them.

Object’ive www.object-ive.com DirectJava

The Cost of Re-Development

THE REDEVELOPMENT TRAP

TIME

FU
N

CT
IO

N
AL

IT
Y

Legacy application

New application

Object’ive www.object-ive.com DirectJava

A (non exhaustive) List of Problems
Dynamic typing in Smalltalk vs Static typing in Java
Multityping is « authorized » in Smalltalk
Java includes primitive types, in Smalltalk everything is object

multiTypeSample

" Dynamic typing and multitype sample "

| i oc |
i := 'hello'.
i := 1.
oc := OrderedCollection new.
oc add: i.
oc add: true.
oc add: 3.
oc add: 'world'

multiTypeSample

" Dynamic typing and multitype sample "

| i oc |
i := 'hello'.
i := 1.
oc := OrderedCollection new.
oc add: i.
oc add: true.
oc add: 3.
oc add: 'world'

Object’ive www.object-ive.com DirectJava

A (non exhaustive) List of Problems
Dynamic typing in Smalltalk vs Static typing in Java
Multityping is « authorized » in Smalltalk
Java includes primitive types, in Smalltalk everything is object

Blocks do not exist in Java
In Smalltalk, a method returns self by default

| dic |

dic := Dictionary new.
dic at: #key1 put: #val1.
dic at: #key2 put: #val2.
dic at: #key3 put: #val3.
dic keysAndValuesDo: [:k :v|

| st |
st := k printString , v printString

]

callToDefaultSelfReturnType

| var |

var := self testBlock.
Transcript cr; show:

'var class = ' ,
var class printString,
' even if testBlock does not return

anything'

| dic |

dic := Dictionary new.
dic at: #key1 put: #val1.
dic at: #key2 put: #val2.
dic at: #key3 put: #val3.
dic keysAndValuesDo: [:k :v|

| st |
st := k printString , v printString

]

callToDefaultSelfReturnType

| var |

var := self testBlock.
Transcript cr; show:

'var class = ' ,
var class printString,
' even if testBlock does not return

anything'

Object’ive www.object-ive.com DirectJava

A (non exhaustive) List of Problems
Dynamic typing in Smalltalk vs Static typing in Java
Multityping is « authorized » in Smalltalk
Java includes primitive types, in Smalltalk everything is object

Blocks do not exist in Java
In Smalltalk, a method returns self by default

Indices management starts at 1 in Smalltalk but at 0 in Java

indicesSamples: aString

" Sample which shows the indices managing (starting at 0 in
Java and 1 in Smalltalk "

| oc anIndice obj |

oc := self sampleReturnCollectionMethodWithYourself.
((aString size > 10) and: [aString size < 20])
ifFalse: [

^'Error'
]
ifTrue: [

aString copyFrom: 10 to: 20
].

anIndice := self getIndice.
obj := oc at: 4.
^oc at: anIndice

indicesSamples: aString

" Sample which shows the indices managing (starting at 0 in
Java and 1 in Smalltalk "

| oc anIndice obj |

oc := self sampleReturnCollectionMethodWithYourself.
((aString size > 10) and: [aString size < 20])
ifFalse: [

^'Error'
]
ifTrue: [

aString copyFrom: 10 to: 20
].

anIndice := self getIndice.
obj := oc at: 4.
^oc at: anIndice

Object’ive www.object-ive.com DirectJava

A (non exhaustive) List of Problems
Dynamic typing in Smalltalk vs Static typing in Java
Multityping is « authorized » in Smalltalk
Java includes primitive types, in Smalltalk everything is object

Blocks do not exist in Java
In Smalltalk, a method returns self by default

Indices management starts at 1 in Smalltalk but at 0 in Java

No extending basic classes in Java, delegation must be used
Smalltalk has no constructors concept
Cascading messages do not exist in Java, no yourself message

sampleReturnCollectionMethodWithYourself

^OrderedCollection new
add: 'a';
add: 'b';
add: 'c';
add: 'd';
yourself

sampleReturnCollectionMethodWithYourself

^OrderedCollection new
add: 'a';
add: 'b';
add: 'c';
add: 'd';
yourself

Object’ive www.object-ive.com DirectJava

A (non exhaustive) List of Problems
Dynamic typing in Smalltalk vs Static typing in Java
Multityping is « authorized » in Smalltalk
Java includes primitive types, in Smalltalk everything is object

Blocks do not exist in Java
In Smalltalk, a method returns self by default

Indices management starts at 1 in Smalltalk but at 0 in Java

No extending basic classes in Java, delegation must be used
Smalltalk has no constructors concept
Cascading messages do not exist in Java, no yourself message

No inheritance of static method in Java
No class instance variables in Java
No Pool Dictionaries in Java

Object subclass: #Class1
Class1 class>>#foo1

^ ‘foo1’
Class1>>#fooInst1

^self class foo1

Class1 subclass: #Class2
Class2>>#fooInst2

^self fooInst1
Class2 class>>#foo1

^ ‘foo2’
What about
Class2 new fooInst1 returns ‘foo2’ in
Smalltalk
new Class2().fooInst1(); returns “foo1”
in Java ?

Object subclass: #Class1
Class1 class>>#foo1

^ ‘foo1’
Class1>>#fooInst1

^self class foo1

Class1 subclass: #Class2
Class2>>#fooInst2

^self fooInst1
Class2 class>>#foo1

^ ‘foo2’
What about
Class2 new fooInst1 returns ‘foo2’ in
Smalltalk
new Class2().fooInst1(); returns “foo1”
in Java ?

Object’ive www.object-ive.com DirectJava

A (non exhaustive) List of Problems
Dynamic typing in Smalltalk vs Static typing in Java
Multityping is « authorized » in Smalltalk
Java includes primitive types, in Smalltalk everything is object

Blocks do not exist in Java
In Smalltalk, a method returns self by default

Indices management starts at 1 in Smalltalk but at 0 in Java

No extending basic classes in Java, delegation must be used
Smalltalk has no constructors concept
Cascading messages do not exist in Java, no yourself message

No inheritance of static method in Java
No class instance variables in Java
No Pool Dictionaries in Java

Java does not support become:
No package name concept in Smalltalk
No overloading in Smalltalk

Object’ive www.object-ive.com DirectJava

DirectJava : 4-Step Iterative Process

ST
Code

Analysis

Corres-
pondence

Knowledge
Base

Translation
Engine

Types

Detection

Object’ive www.object-ive.com DirectJava

Automated Smalltalk Code Analysis

• Code volume analysis
• Class methods and instances methods with similar signatures.

1 • Quality Analysis
–Classes, Methods, Unlisted Variables
–Messages sent but not implemented
–Certain kinds of multityped Methods (return boolean and non boolean)
–Use of Methods without returns (SMT) but as if it was returning self

by developpers (;yourself missing) etc…
–Variables read before written, written but never read
–Checking of temporary variables defined outside a block but

affecting this particular block…

• Detection of class instances’ variables.
• Detection of specific indices issues
• Duplicated code in subclasses

Object’ive www.object-ive.com DirectJava

Types Detection

1 2
1. Recording and launching applications scenarios
2. Automatic type inference
3. Manual allocation of types

Object’ive www.object-ive.com DirectJava

Types Detection

1. Recording and launching applications scenarios
2. Automatic type inference
3. Manual allocation of types

1 2
At the end of this analysis, following types will have

been identified :

•Instance variables
•Class variables
•Temporary variables
•Methods’ arguments
•Methods’ return types
•Statements types
•Reporting on unknown or multi-valued types.
•Methods with source code not fully verified

At the end of this analysis, following types will have
been identified :

•Instance variables
•Class variables
•Temporary variables
•Methods’ arguments
•Methods’ return types
•Statements types
•Reporting on unknown or multi-valued types.
•Methods with source code not fully verified

Object’ive www.object-ive.com DirectJava

Before Scenario Launch

Unknown types (RED)

Known types (GREEN)

Object’ive www.object-ive.com DirectJava

After Scenario Launch

Return type is known

Ambigous type

Return type is known

Ambiguous type (ORANGE)

Unknown type

Object’ive www.object-ive.com DirectJava

Types Detection

1. Recording and launching applications scenarios
2. Automatic type inference
3. Manual allocation of types

1 2

DirectJava inference engine is based on several
principles such as:

•The constructors concept.

•Knowledge of methods return types called

•The concept of « SMALLEST COMMON
ROOT EXCEPT OBJECT» for a group of methods
called for the same receiver.

DirectJava inference engine is based on several
principles such as:

•The constructors concept.

•Knowledge of methods return types called

•The concept of « SMALLEST COMMON
ROOT EXCEPT OBJECT» for a group of methods
called for the same receiver.

Object’ive www.object-ive.com DirectJava

Before Types Inference

Return type is known

Ambigous type

Unknown type

Object’ive www.object-ive.com DirectJava

Type found by inference

After Types Inference

Object’ive www.object-ive.com DirectJava

Types Detection

1 2
1. Recording and launching applications scenarios
2. Automatic type inference
3. Manual allocation of types

(Saved in Knowledge Base for use in Translation Engine)

Object’ive www.object-ive.com DirectJava

After Manual Variable Allocation
anUnknownTypedObject

Manual Allocation

Object’ive www.object-ive.com DirectJava

ST to Java Correspondance Knowledge Base

• Correspondance of Packages, Classes.
• Correspondance of Methods.
• Classes used for delegation (because of insufficient class

libraries in Java, or impossibility of subclassing final classes).
• Variables prefixes.
• Pool Dictionaries.

2

3

1

Object’ive www.object-ive.com DirectJava

ST to Java Correspondance Knowledge Base

• Correspondance of Packages, Classes.
– Correspondance of Methods.
– Classes used for delegation (because of insufficient class libraries in

Java, or impossibility of subclassing final classes).
– Variables prefixes.
– Pool Dictionaries.

2

3

1
Specific packages names are defined either by:

• explicit names

• specific patterns

(for instance, the OVETestApp can correspond the the
explicit package com.ove.examples or by specific
pattern to ove.test.app)

Specific packages names are defined either by:

• explicit names

• specific patterns

(for instance, the OVETestApp can correspond the the
explicit package com.ove.examples or by specific
pattern to ove.test.app)

Object’ive www.object-ive.com DirectJava

Correspondance of classes Interface

Object’ive www.object-ive.com DirectJava

ST to Java Correspondance Knowledge Base

• Correspondance of Packages, Classes.
• Correspondance of Methods.
• Classes used for delegation (because of insufficient class

libraries in Java, or impossibility of subclassing final classes).
• Variables prefixes.
• Pool Dictionaries.

2

3

1

ISSUES :

•No correspondance of methods names

•Smalltalk method successive calls of several
Java methods

•Delegation concept Services inexistant in
Java

•Smalltalk Class method Java Instance method

•Number of method’s argument can vary

•The order of similar method’s argument can
vary

ISSUES :

•No correspondance of methods names

•Smalltalk method successive calls of several
Java methods

•Delegation concept Services inexistant in
Java

•Smalltalk Class method Java Instance method

•Number of method’s argument can vary

•The order of similar method’s argument can
vary

Object’ive www.object-ive.com DirectJava

Default Correspondance of methods

Default Java selector name

Default Java corresponding class name

Non redefined method

Default arguments

Object’ive www.object-ive.com DirectJava

Methods Correspondance Customisation

New selector nameDelegate class

Special keywords

New selector nameDelegated class

Special keywords

Redefined method

Object’ive www.object-ive.com DirectJava

ST to Java Correspondance Knowledge Base

• Correspondance of Packages, Classes.
• Correspondance of Methods.
• Classes used for delegation (because of insufficient

class libraries in Java, or impossibility of subclassing
final classes).

• Variables prefixes.
• Pool Dictionaries.

2

3

1

Object’ive www.object-ive.com DirectJava

DirectJava Classes Library
• Overview Package Class Tree Deprecated Index Help PREV NEXTFRAMES NO FRAMESHierarchy For All Packages
• Package Hierarchies:

– ove.components.base.collection, ove.components.base.date, ove.components.base.lang, ove.components.base.number, ove.tool
• Class Hierarchy
• class java.lang.Object

– class ove.components.base.lang.OVEBasicStringUtil
• class ove.components.base.lang.OVEStringUtil

– class ove.components.base.lang.OVEBeanPropertiesUtility
– class ove.components.base.lang.OVEClassUtil
– class ove.components.base.lang.OVECloneUtil
– class ove.components.base.collection.OVECollectionUtil
– class ove.tool.OVEComparatorUtil
– class ove.tool.OVEComparatorUtilities
– class ove.components.base.date.OVEDateUtil
– class ove.components.base.lang.OVEFilterName (implements java.io.FilenameFilter, java.io.Serializable)
– class ove.components.base.lang.OVEInstanceUtil
– class ove.components.base.number.OVEInterval (implements java.util.Iterator)
– class ove.components.base.number.OVEMathUtil
– class ove.components.base.lang.OVEMessage
– class ove.components.base.lang.OVESerializationUtility
– class ove.components.base.collection.OVESortedList (implements java.util.List)
– class ove.components.base.date.OVETimeUtil
– class java.lang.Throwable (implements java.io.Serializable)

• class java.lang.Exception
– class java.lang.RuntimeException

» class ove.components.base.collection.OVEBlockReturnException
• Interface Hierarchy
• interface ove.components.base.collection.OVEClosure
• interface ove.components.base.collection.OVEOneArgClosure
• interface ove.components.base.collection.OVEOneArgPredicate
• interface ove.components.base.collection.OVEPredicate
• interface ove.components.base.collection.OVETransformer
• interface ove.components.base.collection.OVETwoArgsClosure
• interface ove.components.base.collection.OVETwoArgsPredicate
• interface ove.components.base.collection.OVETwoArgsTransformer
• Overview Package Class Tree Deprecated Index Help PREV NEXTFRAMES NO FRAMES

Object’ive www.object-ive.com DirectJava

ST to Java Correspondance Knowledge Base

• Correspondance of Packages, Classes.
• Correspondance of Methods.
• Classes used for delegation (because of insufficient class libraries in

Java, or impossibility of subclassing final classes).
• Variables prefixes.
• Pool Dictionaries.

2

3

1

Object’ive www.object-ive.com DirectJava

Translation Engine

• Translation by Batches, Classes, Methods
• Direct integration in target environment (VA for Java)
• Translation by Deltas (translating only differences between

2 versions of sub-application, of class, etc…)
• GUI
• Java Overriding

21

34

Object’ive www.object-ive.com DirectJava

Technical issues

• Static Methods (Java) vs Class Methods (ST)

• Most common cases

Object’ive www.object-ive.com DirectJava

Static Methods (Java) vs Class Methods (ST)

• Smalltalk
Object subclass: #Class1

Class1 class>>#foo1
^ ‘foo1’

Class1>>#fooInst1
^self class foo1

Class1 subclass: #Class2
Class2>>#fooInst2

^self fooInst1
Class2 class>>#foo1

^ ‘foo2’

• Java
Class1
public static String foo1(Class aClass) {

return (String)new OVEMessage().perform(aClass,“foo1",new Object[]{});
}
public String fooInst1(){

return foo1(getClass());
}
Class2
public String fooInst2() {

return fooInst1();
}

public static String foo1() {
return “foo2”;

}

Object’ive www.object-ive.com DirectJava

Simple Samples (1)Simple String Sample

Simple boolean sample

Object’ive www.object-ive.com DirectJava

Simple Samples (2)
Indice sample

Indices management

Object’ive www.object-ive.com DirectJava

Cascading messages with yourself

Object’ive www.object-ive.com DirectJava

Block without inner class (special patterns)

Object’ive www.object-ive.com DirectJava

Blocks with inner classes

Use of differents inner classes depending on block return type
and arguments number

Object’ive www.object-ive.com DirectJava

SortedCollection with a sort block

Use of Comparator interface

Primitive type to non primitive type conversion

Non Primitive type to primitive type conversion

Object’ive www.object-ive.com DirectJava

Case Study: CCR
(Caisse Centrale de Réassurance)

• Migration of core mission critical applications (over 1 million lines of code, ERP,
Sales Management, Portfolio Management) i.e. 4,449 Classes ; 78,624 Methods

• Reasons for Migration: maintaining an team of Smalltalk experts, Connectivity

• DirectJava benefits : originally estimated as a 100 men/year project,
migration will turn out to be a 3 men/year project. (now 30 months into it)

• Between 80 and 95% of code has been translated automatically.
Automatic translation has also helped testing and architecture choices
Example: persistance framework re-organized in order to use EJBs
Massive increase in volume of code reviewed helped by automated translation

• Business Benefits: New market developments (esp Online Brokerage) thanks to Java
• Better integration with existing tools in the environment (Domino/Notes, Excell, Word)

Object’ive www.object-ive.com DirectJava

Thank You

