
What the CRaC...
 Coordinated Restore at Checkpoint

on the Java Virtual Machine

Gerrit Grunwald | Developer Advocate | Azul

ABOUTME.

SLIDES

JAVA IS
GREAT...

VIBRANT
COMMUNITY...

HUNDREDS OF

JUGs...

THOUSANDS OF

FOSS PROJECTS...

JAVA VIRTUAL

MACHINE

JAVA VIRTUAL

MACHINE

HOW DOES

IT WORK...

MyClass.java MyClass.class

SOURCE CODE COMPILER BYTE CODE

MyClass.class

BYTE CODE CLASS LOADER JVM MEMORY

JVM MEMORY

􀊫 􀈒

EXECUTION ENGINE

EXECUTION ENGINE

Interpreter C1 JIT

Compiler

(client)

C2 JIT

Compiler

(server)

􀊫
Profiler

􀈒
Garbage

Collector

EXECUTION ENGINE

Interpreter C1 JIT

Compiler

(client)

C2 JIT

Compiler

(server)

􀊫
Profiler

􀈒
Garbage

Collector

Tiered compiliation

EXECUTION ENGINE

Interpreter C1 JIT

Compiler

(client)

C2 JIT

Compiler

(server)

􀊫
Profi

􀈒
Garbage

Collector

Tiered compiliation

INTERPRETER

Converts ByteCode into

instruction set of CPU

Detects hot spots by

counting method calls

JVM

THRESHOLD

REACHED

Pass the hot spot methods

to C1 JIT Compiler

JVM C1 JIT

COMPILER

Compiles code as quickly

as possible with low optimisation

C1 JIT

COMPILER

Compiles code as quickly

as possible with low optimisation

Profiles the running code

(detecting hot code)

JVM

THRESHOLD

REACHED

Pass the "hot" code

to C2 JIT Compiler

JVM C2 JIT

COMPILER

Compiles code with best

optimisation possible (slower)

TIERED
COMPILATION

Level 0 - Interpreted code

Level 1 - C1 compiled code (no profiling)

Level 2 - C1 compiled code (basic profiling)

Level 3 - C1 compiled code (full profiling)

Level 4 - C2 compiled code (uses profile data from previous steps)

LEVELS OF EXECUTION

LEVELS OF EXECUTION
0: INTERPRETER 1 - 3: C1 4: C2

0 3 4

0 2 3 4

0 1 3

Normal Flow

Startup Flow

(C2 busy)

Trivial Method

Flow

1: No profiling 2: Basic profiling 3: Full Profiling

EXECUTION
CYCLE

EXECUTION CYCLE
INTERPRETATIO

N

Slow
(Execution Level 0)

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Finding

"hotspots"

Slow
(Execution Level 0)

COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Fast compile,

low optimisation

(Execution Level 3)

Finding

"hotspots"

Slow
(Execution Level 0)

PRO
FIL

IN

G COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Finding

"hot code"

Fast compile,

low optimisation

(Execution Level 3)

Finding

"hotspots"

Slow
(Execution Level 0)

C
O
M
PI
LI
N
G
C
2

PRO
FIL

IN

G COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Slower compile,

high optimisation

(Execution Level 4)

Finding

"hot code"

Fast compile,

low optimisation

(Execution Level 3)

Finding

"hotspots"

Slow
(Execution Level 0)

DE
OP

TIM
ISAT

ION

C
O
M
PI
LI
N
G
C
2

PRO
FIL

IN

G COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE
Can happen

(performance hit)

Slower compile,

high optimisation

(Execution Level 4)

Finding

"hot code"

Fast compile,

low optimisation

(Execution Level 3)

Finding

"hotspots"

Slow
(Execution Level 0)

DEOPTIMISATION

DEOPTIMISATION
BRANCH ANALYSIS

int computeMagnitude (int value) {

 var bias;

 if (value > 9) {

 bias = compute(value);

 } else {

 bias = 1:

 }

 return Math.log10(bias + 99);

}

value > 9

bias = compute(value) bias = 1

Math.log10(bias + 99)

TRUE FALSE

DEOPTIMISATION
BRANCH ANALYSIS

value > 9

bias = compute(value) bias = 1

Math.log10(bias + 99)

TRUE FALSE

int computeMagnitude (int value) {

 var bias;

 if (value > 9) {

 bias = compute(value);

 } else {

 bias = 1:

 }

 return Math.log10(bias + 99);

}

value was never greater than 9

DEOPTIMISATION
BRANCH ANALYSIS

int computeMagnitude (int value) {

 if (value > 9) {

 uncommonTrap();

 }

 return 2; //Math.log10(100)

}

value > 9

deoptimise return 2

TRUE FALSE

JVM PERFORMANCE GRAPH

GarbageCollector pauses

Deoptimisations

Performance

Interpreter C1 Compiler C2 Compiler

THAT'S
GREAT...

...BUT...

...IT TAKES
TIME !

JVM STARTUP

JVM

Load & Initialize

Optimization

FAST

JVM START

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

FAST TAKES A BIT

JVM START APPLICATION START

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

FAST TAKES A BIT

Generally referred to as JVM Startup

(Time to first response)

JVM START APPLICATION START

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

JVM

Optimizing (Compile/Decompile)

FAST TAKES A BIT TAKES SOME TIME

Generally referred to as JVM Startup

(Time to first response)

App

Apply application specific workloads

JVM START APPLICATION START APPLICATION WARMUP

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

JVM

Optimizing (Compile/Decompile)

FAST TAKES A BIT TAKES SOME TIME

Generally referred to as JVM Startup

(Time to first response)

Generally referred to as JVM Warmup

(Time to n operations)

App

Apply application specific workloads

JVM START APPLICATION START APPLICATION WARMUP

MICROSERVICE
ENVIRONMENT

MICROSERVICE ENVIRONMENT

FIRST RUN

JVM STARTUP

Performance

SECOND RUN

JVM STARTUP

Performance

THIRD RUN

JVM STARTUP

Performance

WOULDN'T IT BE GREAT...?
FIRST RUN

JVM STARTUP

Performance

SECOND RUN

NO STARTUP OVERHEAD

Performance

THIRD RUN

NO STARTUP OVERHEAD

Performance

SOLUTIONS...?

CLASS DATA
SHARING

WHAT ABOUT CDS?
Dump internal class representations into file

Shared on each JVM start (CDS)

No optimization or hotspot detection

Only reduces class loading time

Startup up to 2 seconds faster

Good info from Ionut Balosin

MyClass.class

BYTE CODE CLASS LOADER JVM MEMORY

CDS

AHEAD OF TIME
COMPILATION

WHY NOT USE AOT?
No interpreting bytecodes

No analysis of hotspots

No runtime compilation of code

Start at full speed, straight away

GraalVM native image does that

PROBLEM SOLVED...?

NOT SO FAST...
AOT is, by definition, static

Code is compiled before it is run

Compiler has no knowledge of how the
code will actually run

Profile Guided Optimisation (PGO)
can partially help

JVM PERFORMANCE GRAPH

AOT Compiled Code

AOT Compiled Code with Profile Guided Optimisation

Needs to run once for profiling

Performance

AOT VS JIT
Limited use of method inlining

No runtime bytecode generation

Reflection is possible but complicated

Unable to use speculative optimisations

Overall performance will typically be lower

Deployed env != Development env.

Full speed from the start

No overhead to compile code at runtime

Small memory footprint

Can use aggressive method inlining at runtime

Can use runtime bytecode generation

Reflection is simple

Can use speculative optimisations

Overall performance will typically be higher

Deployed env. == Development env.

Requires more time to start up

Overhead to compile code at runtime

Larger memory footprint

AOT JIT

A DIFFERENT

APPROACH

CRIU
CHECKPOINT RESTORE IN USERSPACE

Linux project

Part of kernel >= 3.11 (2013)

Freeze a running container/application

Checkpoint its state to disk

Restore the container/application from the saved data.

Used by/integrated in OpenVZ, LXC/LXD, Docker,
Podman and others

CHECKPOINTRESTOREINUUSERSPACE

CHECKPOINTRESTOREINUUSERSPACE

Heavily relies on /proc file system

It can checkpoint:

Processes and threads

Application memory, memory mapped files and shared memory

Open files, pipes and FIFOs

Sockets

Interprocess communication channels

Timers and signals

Can rebuild TCP connection from one side only

Restart from saved state on another machine
(open files, shared memory etc.)

Start multiple instances of same state on same machine
(PID will be restored which will lead to problems)

A Java Virtual Machine would assume it was continuing its tasks
(very difficult to use effectively, e.g. running applications might have open files etc.)

CRIU CHALLENGES

CRaC
Coordinated Restore at Checkpoint

RUNNING APPLICATION

Aware of checkpoint

being created

RUNNING APPLICATION

Aware of restore

happening

CRaC
A way to solve the problems when checkpointing a JVM

(e.g. no open files, sockets etc.)

CRaC
CRIU comes bundled with the JDK

Heap is cleaned, compacted
(using JVM safepoint mechanism -> JVM is in a safe state)

Comes with a simple API

Creates checkpoints using code or jcmd

Throws CheckpointException
(in case of open files/sockets)

CRaC

START

>java -XX:CRaCCheckpointTo=PATH -jar app.jar

RESTORE

>java -XX:CRaCRestoreFrom=PATH

Additional command line parameters

openjdk.org/projects/crac

Lead by Anton Kozlov (Azul)

http://openjdk.org/projects/crac

CRaC API

<<interface>>

Resource

beforeCheckpoint()

afterRestore()

CRaC uses Resources that can be
notified about a Checkpoint and
Restore

Classes in application code
implement the Resource interface

The application receives callbacks
during checkpointing and
restoring

Makes it possible to close/restore
resources (e.g. open files, sockets)

CRaC API

Resource objects need to be registered with a Context so that they
can receive notifications

There is a global Context accessible by via the static method
Core.getGlobalContext()

CRaC API

<<interface>>

Resource

beforeCheckpoint()

afterRestore()

Core

getGlobalContext()

CRaC API

<<abstract>>

Context

register(Resource)

CRaC API
The global Context maintains a list of Resource objects

The beforeCheckpoint() methods are called in the reverse order the
Resource objects have been registered

The afterRestore() methods are called in the order the Resource
objects have been registered

CREATING A CHECKPOINT
FROM THE COMMAND LINE:

>jcmd YOUR_AWESOME.jar JDK.checkpoint

>jcmd PID JDK.checkpoint

CREATING A CHECKPOINT

Core.checkpointRestore();

FROM THE CODE:

WHEN TO CHECKPOINT ?
Run your app with your typical workload

Use the parameter -XX:+PrintCompilation

Observe the moment the compilations are
ramped down

Create the checkpoint

TYPICAL USAGE...
Run app in a docker container

Create checkpoint in the docker container

Commit the state of checkpointed container

Start the container from checkpointed state

COMPATIBILITY...
Only on Linux x64 (at the moment, aarch64 would be possible)

Upgrade (cp: Core i7 -> restore: Core i9)

No downgrade (cp: Core i9 -> restore: Core i7)

Usually node groups in cloud env. stick to same
cpu architecture

Using docker it works on linux, macos & windows

DEMO...

JVM STARTUP

public Main() { ... }

@Override public void afterRestore(Context<? extends Resource> context) throws Exception { ... }

private boolean isPrime(final long number) {

 if (number < 1) { return false; }

 if (cache.containsKey(number)) { return cache.get(number); }

 boolean isPrime = true;

 for (long n = number ; n > 0 ; n--) {

 if (n != number && n != 1 && number % n == 0) {

 isPrime = false;

 break;

 }

 }

 cache.put(number, isPrime);

 return isPrime;

}

JVM STARTUP DEMO

public Main() { ... }

@Override public void afterRestore(Context<? extends Resource> context) throws Exception { ... }

private boolean isPrime(final long number) {

 if (number < 1) { return false; }

 if (cache.containsKey(number)) { return cache.get(number); }

 boolean isPrime = true;

 for (long n = number ; n > 0 ; n--) {

 if (n != number && n != 1 && number % n == 0) {

 isPrime = false;

 break;

 }

 }

 cache.put(number, isPrime);

 return isPrime;

}

JVM STARTUP DEMO

public Main() {

 Core.getGlobalContext().register(Main.this);

 final long start = System.nanoTime();

 // Loop emulates Application Startup and fills up the cache

 for (int i = 1 ; i < 50_000 ; i++) {

 isPrime(i);

 }

 isPrime(25000);

 System.out.println("Time to first response: " + ((System.nanoTime() - start) / 1_000_000) + " ms");

}

@Override public void afterRestore(Context<? extends Resource> context) throws Exception { ... }

private boolean isPrime(final long number) { ... }

JVM STARTUP DEMO

public Main() {

 Core.getGlobalContext().register(Main.this);

 final long start = System.nanoTime();

 // Loop emulates Application Startup and fills up the cache

 for (int i = 1 ; i < 50_000 ; i++) {

 isPrime(i);

 }

 isPrime(25000);

 System.out.println("Time to first response: " + ((System.nanoTime() - start) / 1_000_000) + " ms");

}

@Override public void afterRestore(Context<? extends Resource> context) throws Exception {

 System.out.println("afterRestore() called in Main");

 final long start = System.nanoTime();

 isPrime(25000);

 System.out.println("Time to first response: " + ((System.nanoTime() - start) / 1_000_000) + " ms");

}

private boolean isPrime(final long number) { ... }

JVM STARTUP DEMO

>docker run -it --privileged --rm --name crac6 hansolo/crac6 java
-jar /opt/app/crac6-17.0.0.jar

>docker run -it --privileged --rm --name crac6 hansolo/
crac6:checkpoint java -XX:CRaCRestoreFrom=/opt/crac-files

JVM STARTUP DEMO
SHELL 1 SHELL 2

>docker run -it --privileged --rm --name crac6 hansolo/crac6 java
-jar /opt/app/crac6-17.0.0.jar

JVM STARTUP DEMO
SHELL 1 SHELL 2

>docker run -it --privileged --rm --name crac6 hansolo/
crac6:checkpoint java -XX:CRaCRestoreFrom=/opt/crac-files

Folder that contains the stored files

of the checkpoint

JVM STARTUP DEMO
SHELL 1 SHELL 2
>docker run -it --privileged --rm --name crac6 hansolo/crac6 java
-jar /opt/app/crac6-17.0.0.jar

JVM Startup time : 45 ms

PID : 1

Time to first response: 11329 ms

>docker run -it --privileged --rm --name hansolo/crac6:checkpoint
java -XX:CRaCRestoreFrom=/opt/crac-files

afterRestore() called in Main

Time to first response: 2ms

JVM STARTUP DEMO
SHELL 1 SHELL 2
>docker run -it --privileged --rm --name crac6 hansolo/crac6 java
-jar /opt/app/crac6-17.0.0.jar

JVM Startup time : 80 ms

PID : 1

Time to first response: 8321 ms

>docker run -it --privileged --rm --name hansolo/crac6:checkpoint
java -XX:CRaCRestoreFrom=/opt/crac-files

afterRestore() called in Main

Time to first response: 2ms

github.com/HanSolo/crac6

http://github.com/HanSolo/crac6

OK...BUT

HOW GOOD IS IT...?

Time to first operation

Spring-Boot

Micronaut

Quarkus

xml-transform

[ms]

0 1250 2500 3750 5000

4,352

980

1,001

3,898

OpenJDK

Time to first operation

Spring-Boot

Micronaut

Quarkus

xml-transform

[ms]

0 1250 2500 3750 5000

 53

 33

 46

 38

4,352

980

1,001

3,898

OpenJDK OpenJDK on CRaC

SUMMARY...

SUMMARY...
CRaC is a way to pause and restore a JVM based application

It doesn't require a closed world as with a native image

Benefit is potentially extremely fast time to full performance level

Eleminates the need for hotspot identification, method compiles,
recompiles and deoptimisations

Improved throughput from start

CRaC is an OpenJDK project

CRaC can save infrastructure cost

C
PU

 U
til

iz
at

io
n

0 %

25 %

50 %

75 %

100 %

Time

INFRASTRUCTURE COST

Checkpoint

JVM startup time

Interpretation +

Compilation Overhead

Start after restore

Eliminates startup time

Eliminates cpu overhead

github.com/CRaC

http://github.com/CRaC

DEMO...

THANK
YOU

