
www.optivem.com | 1

TDD & Clean Architecture
Driven by Behaviour

Valentina Cupać - Optivem

http://www.optivem.com

www.optivem.com | 2

About the speaker

Valentina Cupać coaches development teams
in TDD & Clean Architecture to increase
quality, accelerate delivery and scale teams.

Previously, she worked as a Senior Developer,
Technical Lead & Solutions Architect.

Graduated from University of Sydney -
Computer Science, Maths and Finance.

I write regular posts on
LinkedIn about TDD &
Clean Architecture.

Connect with me or follow
me on LinkedIn:

https://www.linkedin.com/in/valentinacupac/

http://www.optivem.com
https://www.linkedin.com/in/valentinacupac/

www.optivem.com | 3

1. Why are we here - TDD is painful, but is there another way?

2. The Deeper Why - Don’t ship code, solve business needs

3. Executable Specifications - Do tests codify requirement specs or impl. specs?

4. What’s a Unit Test? - Are we testing module behaviour or class structure?

5. Testing Behaviour - Tests should be coupled to behaviour, not to structure

6. TDD vs TLD - How do we drive development through executable requirements?

7. TDD & Clean Architecture - Driving architecture through system behaviour

Agenda

http://www.optivem.com

www.optivem.com | 4

Why are we here

TDD is painful, but is there another way?

http://www.optivem.com

www.optivem.com | 5

Misconception #1 - The class is the unit of isolation

Write a test class for each production class.

Write test method(s) for each production method.

Isolate the class under test by mocking out all its collaborators.

Wikipedia says that unit testing means testing “individual units of
source code”, and in the case of OOP that we’re testing a “class, or an
individual method”. We trust Wikipedia... right?
https://en.wikipedia.org/wiki/Unit_testing

http://www.optivem.com
https://en.wikipedia.org/wiki/Unit_testing

www.optivem.com | 6

It’s normal for test code to be 2-4X larger than production code.

It’s normal that writing unit tests takes up so much time.

It’s normal that unit tests break when we refactor class design.

Anything that’s worthwhile must be painful. No pain, no gain, right?

Misconception #2 - Unit Tests must be expensive

http://www.optivem.com

www.optivem.com | 7

Misconception #3: BDD is about behaviour, TDD isn’t

ATDD and BDD are about behaviours. They are about testing our

system from the user’s perspective.

TDD is not about system behaviour, it’s about testing classes and their

interactions with other classes.

When we’re under pressure and when the budget is tight, let’s just
keep ATDD/BDD. It actually tells us if we satisfied user requirements.

http://www.optivem.com

www.optivem.com | 8

Imagine if TDD could really speed up development?

Imagine if TDD could be done with significantly less test code?

Imagine if tests wouldn’t break all the time whilst you refactor your class designs?

Imagine if you could test requirements at the unit level and get really fast feedback?

Imagine if anyone - and not just companies with huge budgets - could get the benefits of TDD?

But what if we could solve the pains of TDD?

http://www.optivem.com

www.optivem.com | 9

The Deeper Why

Our job is not to ship code, our job is to solve business needs

http://www.optivem.com

www.optivem.com | 10

Why are we building houses? To have a place to live.

Why are we building cars? To be able to travel.

Why are we building software? To satisfy user needs.

The Why

http://www.optivem.com

www.optivem.com | 11

The Why

We don’t get paid to “write code”.

We get paid to solve business needs.

How? By converting requirements into software

solutions to solve the business needs.

http://www.optivem.com

www.optivem.com | 12

Requirements & Solutions

One requirement can be satisfied by
multiple solutions

Solution #1
Bicycle

Solution #2
Car

Solution #3
Spaceship

Requirement

I want to be able to travel
from place A to place B.

http://www.optivem.com

www.optivem.com | 13

Tests as Executable
Specifications
Do tests codify requirement specs or implementation specs?

http://www.optivem.com

www.optivem.com | 14

Audience Poll Are you familiar with the term “executable

specifications”?

1. Yes

2. No

3. Sort of

http://www.optivem.com

www.optivem.com | 15

Requirements drive implementation

Business
Needs

Software
Requirements

WHY WHAT

Software
Implementation

HOW

Need to satisfy some
business needs, need to
provide business value

Identify requirements,
which will be converted
into tests

Implement the requirements in
code, using tests to drive the
implementation

http://www.optivem.com

www.optivem.com | 16

Requirements & Implementation

Requirement
Specification

Solution #1
Implementation

Solution #2
Implementation

Solution #3
Implementation

http://www.optivem.com

www.optivem.com | 17

Requirements naturally affect implementation

Requirement
Specification

Solution
Implementation

✔

When we change requirements specifications, naturally
we have to change the solution implementation too

http://www.optivem.com

www.optivem.com | 18

Implementation should not affect requirements

Requirement
Specification

Solution
Implementation

⨯

When we refactor or redesign the solution implementation,
it should not change the requirement specification

http://www.optivem.com

www.optivem.com | 19

Implementation

Tests as Requirement Specifications

Executable
REQUIREMENT

Specifications

API
Tests

Low Coupling

Tests are coupled to the API, the external behaviour.

Robust tests - safely change the internal implementation without

changing tests. Tests are changed only when the requirements change.

http://www.optivem.com

www.optivem.com | 20

Implementation

Tests as Implementation Specifications

Executable
IMPLEMENTATION

Specifications

Tests

High Coupling

API

Tests are coupled to the implementation, the internal structure.

Fragile tests - changing implementation breaks existing tests, causing

tests to change even though requirements were not changed!

http://www.optivem.com

www.optivem.com | 21

Summary - Testing requirements or design?

Test = Requirement Spec Test = Implementation Spec

Test robustness

Refactoring safety

Refactoring cost

Test coupling

ROI

Robust tests

Tests are stable

No changes to tests

Coupling to API

High

Fragile tests

Tests break

Tests have to be changed

Coupling to Implementation

Low

http://www.optivem.com

www.optivem.com | 22

What’s a Unit Test?

Are we testing module behaviour or class structure?

http://www.optivem.com

www.optivem.com | 23

Audience Poll What’s your familiarity with social vs

solitary unit tests?

1. Didn’t hear about it

2. Heard about it, but not clear

3. Fully familiar with it

http://www.optivem.com

www.optivem.com | 24

What’s a Unit Test?
● Verifies a unit
● Verifies it in isolation
● Verifies it quickly

https://freecontent.manning.com/what-is-a-unit-test-part-2-classical-vs-london-schools/
https://martinfowler.com/bliki/UnitTest.html

Note 1: “Isolation” in tests is achieved through the use of “test doubles” (stubs, spies, fakes, mocks)
Note 2: “Shared dependencies” refers to I/O concerns (Files, DB, Network) since that would
prevent tests from running in isolation

Test Code

https://martinfowler.com/bliki/UnitTest.html

Sociable Unit Tests (Classical TDD) Solitary Unit Tests (Mockist TDD)

Unit

Isolation

One module (one or more classes)
(coarse-grained)

Isolate module ONLY from shared
dependencies (DB, Files, etc.)

One class (fine-grained)

Isolate class from ALL its
collaborators

http://www.optivem.com
https://freecontent.manning.com/what-is-a-unit-test-part-2-classical-vs-london-schools/
https://martinfowler.com/bliki/UnitTest.html
https://martinfowler.com/bliki/UnitTest.html

www.optivem.com | 25

Sociable unit tests access the module API.

They don’t know about the module’s

implementation details.

We use test doubles only for shared

dependencies (DB, Files, etc.)

→ Refactoring module’s implementation has no
impact on tests.

Sociable Unit Tests - Testing Module API

A

B

C

T[A]

D ✔

http://www.optivem.com

www.optivem.com | 26

Solitary unit tests access the module
implementation.

They know about module’s internal classes and

their collaborators.

We mock all the collaborators.

→ Refactoring the module’s implementation

breaks existing tests.

Solitary Unit Tests - Testing Module Implementation

B

C

T[A]

T[B]

T[C]

D

A

⨯

http://www.optivem.com

www.optivem.com | 27

Micro Comparison

Sociable Unit Tests Solitary Unit Tests

There is low coupling between tests and
code, so changes & refactoring is easier

A

B

C

A

D

There is high coupling between tests and
code, so changes & refactoring is harder

B

C

A

B

C

D

A

http://www.optivem.com

www.optivem.com | 28

Macro Comparison

Sociable Unit Tests

Solitary Unit Tests

http://www.optivem.com

www.optivem.com | 29

Macro Comparison II

Social Unit Tests
Tests coupled to API

Solitary Unit Tests
Tests coupled to Implementation

https://blog.cleancoder.com/uncle-bob/2017/03/03/TDD-Harms-Architecture.html

http://www.optivem.com
https://blog.cleancoder.com/uncle-bob/2017/03/03/TDD-Harms-Architecture.html

www.optivem.com | 30

Unit Test Comparison

Sociable Unit Tests (coarse-grained) Solitary Unit Tests (fine-grained)

Tests are coupled to module API
(module behaviour)

Robust tests → Refactoring module
implementation does not impact tests

Lower cost → Less test code, higher test
stability, lower maintenance cost

Tests are coupled to module
implementation (module structure)

Fragile tests → Refactoring module
implementation causes tests to break

Higher cost → More test code, lower test
stability, higher maintenance cost

http://www.optivem.com

www.optivem.com | 31

Testing Behaviour

Tests should be coupled to behaviour, not to structure

http://www.optivem.com

www.optivem.com | 32

Audience Poll What are the origins of TDD and BDD?

1. TDD was originally about tests, and

BDD was originally about behaviour

2. Both TDD and BDD were originally

about behaviour

3. Not really sure

http://www.optivem.com

www.optivem.com | 33

Kent Beck - Tests should be coupled to behaviour
Programmer tests should be sensitive to behavior changes and

insensitive to structure changes. - Kent Beck

https://medium.com/@kentbeck_7670/programmer-test-principles-d01c064d7934

If the program’s behavior is stable from an observer’s perspective,

no tests should change.” - Kent Beck

https://medium.com/@kentbeck_7670/programmer-test-principles-d01c064d7934

Tests should be coupled to the behavior of code and decoupled from
the structure of code. - Kent Beck

https://twitter.com/kentbeck/status/1182714083230904320?lang=en

http://www.optivem.com
https://medium.com/@kentbeck_7670/programmer-test-principles-d01c064d7934
https://medium.com/@kentbeck_7670/programmer-test-principles-d01c064d7934
https://twitter.com/kentbeck/status/1182714083230904320?lang=en

www.optivem.com | 34

Dan North - Behaviour Driven Development (BDD)

“Behaviour” is a more useful word than “test” - Dan North

Requirements are behaviour - Dan North

https://dannorth.net/introducing-bdd/

Dan North attempted to “fix” the naming confusing by replacing the word “test” by “behaviour”.
Even though many people associate BDD with ATDD/Gherkin/Cucumber, the origins of BDD
were actually an attempt to showcase the behavioural intention of TDD.

http://www.optivem.com
https://dannorth.net/introducing-bdd/

www.optivem.com | 35

Martin Fowler - Refactoring

Refactoring is a disciplined technique for restructuring an existing

body of code, altering its internal structure without changing its
external behavior - Martin Fowler

https://martinfowler.com/tags/refactoring.html

When we refactor, we change structure but not behaviour!

http://www.optivem.com
https://martinfowler.com/tags/refactoring.html

www.optivem.com | 36

“... the ideal test is unchanging…”

“When an engineer refactors the internals of a system without modifying its

interface… the system’s tests shouldn’t need to change. The role of tests in this case

is to ensure that the refactoring didn’t change the system’s behavior.”

“Changing a system’s existing behavior is the one case when we expect to have to

make updates to the system’s existing tests.”

https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB

Testing at Google - “Striving for Unchanging Tests”

http://www.optivem.com
https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB

www.optivem.com | 37

Testing at Google - “Test via Public APIs”

“... let’s look at some practices for making sure that tests don’t need to change unless

the requirements of the system being tested change.”

“By far the most important way to ensure this is to write tests that would invoke the
system being tested in the same way its users would; that is, making calls against its

public API rather than implementation details.”

“If tests work the same way as the system’s users, by definition, change that breaks a

test might also break a user.”

https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB

http://www.optivem.com
https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB

www.optivem.com | 38

“The first instinct of many engineers is to try to match the structure of their tests to

the structure of their code such that every production method has a corresponding

test method.”

“This pattern can be convenient at first, but over time it leads to problems.”

“There’s a better way: rather than writing a test for each method, write a test for
each behavior.”

https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB

Testing at Google - “Test Behaviors, Not Methods”

http://www.optivem.com
https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB

www.optivem.com | 39

When to write new tests or change tests?

If there’s a new behaviour Write a new test

If there’s a change in behaviour Update the tests

If there’s no change in behaviour No change in tests

BEHAVIOURAL CHANGES

New or changed

business requirements

STRUCTURAL CHANGES

Refactoring or redesign

http://www.optivem.com

www.optivem.com | 40

TDD vs TLD

How do we drive development through executable requirements?

http://www.optivem.com

www.optivem.com | 41

Audience Poll Did you try TDD? What was your experience

with TDD?

1. Never tried TDD

2. Tried TDD, but not convinced

3. Tried and partially picked up TDD

4. Tried and fully adopted TDD

http://www.optivem.com

www.optivem.com | 42

TDD Red-Green-Refactor

RED GREEN REFACTOR

Write a failing test,
this represents a
“falsifiable test”

Write just enough
code to pass the test,

we get “working code”

Clean up the code
through refactoring,
we get “clean code”

http://www.optivem.com

www.optivem.com | 43

TDD Feedback Loops

1. REQUIREMENT TESTABILITY: Can we write a test for the requirement?

2. TEST FALSIFIABILITY: Do we see the test fail? The RED step.

3. INTERFACE DESIGN: Is the interface user-friendly? The test is the first consumer.

4. IMPLEMENTATION CORRECTNESS: Does the code work? The GREEN step.

5. IMPLEMENTATION QUALITY: Is the implementation clean? The REFACTOR step.

http://www.optivem.com

www.optivem.com | 44

Audience Poll When does your team write unit tests?

1. We don’t write unit tests at all

because my team doesn’t want to

2. We don’t write unit tests because we

don’t have the budget/time for it

3. We firstly write code, then write the

unit tests afterwards

4. We always write the unit test first,

then write code after the test

http://www.optivem.com

www.optivem.com | 45

Test Driven Development

Requirement Write test Write code Refactor code

1. Requirement testable?
2. Test falsifiable?
3. Interface consumer-friendly?

4. Implementation works?

5. Implementation clean?

TDD results in faster development
due to shorter feedback loop

http://www.optivem.com

www.optivem.com | 46

Test Last Development

Requirement Write
code

Write
test

Refactor
code

4. Implementation works?

5. Implementation clean?

TLD results in slower development due to
longer feedback loop

Rework
test & code

Comment
out code

Uncomment
code

2. Test falsifiable?

3. Interface consumer-friendly?

1. Requirement testable?

In the best-case TLD, there is no “Manual
debug”. In the worst-case TLD (common!),
there is “Manual debug” (slow!) and a high risk
that tests are never written at all.

Manual
debug

Ensure code is testable
and interface is
consumer-friendly

http://www.optivem.com

www.optivem.com | 47

TDD results in faster development

due to shorter feedback loop

TDD guarantees that code is

covered by tests (because we never

write code without tests first)

TDD vs TLD - Summary

TLD results in slower development

due to longer feedback loop

TLD does not guarantee that code

will be covered by tests (in the worst

case, tests may never be written)

http://www.optivem.com

www.optivem.com | 48

TDD & Clean Architecture

Driving application architecture through system behaviour

http://www.optivem.com

www.optivem.com | 49

Audience Poll Does your team use any of these

architectures?

1. CRUD - Controllers, Services, Entities

(ORM), Repositories (ORM)

2. Hexagonal Architecture

3. Onion Architecture

4. Clean Architecture

5. Something else

http://www.optivem.com

www.optivem.com | 50

Hexagonal Architecture

https://alistair.cockburn.us/hexagonal-architecture/

User-side
Adapters
(Driver
Adapters)
GUI, Console,
REST API, Tests

User-side API
(Driver Ports)

Application Core (Hexagon)

Server-side API
(Driven Ports)

Server-side Adapters
(Driven Adapters)

DB, Files, Web Services

Users,
Programs,
Scripts

http://www.optivem.com
https://alistair.cockburn.us/hexagonal-architecture/

www.optivem.com | 51

Hexagonal Architecture - Unit Testing

Unit Tests can
execute system use
cases through the
user-side API

Test Doubles serve as
in-memory adapters for
the server-side API

http://www.optivem.com

www.optivem.com | 52

Onion Architecture https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

Application Core

Domain
Model

Domain Services

Application Services

User Interface

Tests

In
fra

str
uctu

re

DB

File

Web
Service

http://www.optivem.com
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

www.optivem.com | 53

Onion Architecture & Hexagonal Architecture

Domain Model

Domain Services

Application ServicesUser Interface

Infrastructure

Hexagonal Architecture

User-side Adapters

User-side Ports

Server-side Ports

Server-side Adapters

Application Core

Technologies

Tests

Users

http://www.optivem.com

www.optivem.com | 54

Clean Architecture

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Entities

Use Cases

Controllers

G
atew

ays Pre
se

nte
rs

W
eb

Devices

DB

UI

External
interfaces

Presenter Use Case
Output Port

Use Case
Interactor

Use Case Input
PortController

Flow of control
Frameworks & Drivers

Enterprise Business Rules

Application Business Rules

Interface Adapters

http://www.optivem.com
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

www.optivem.com | 55

Clean Architecture & Hexagonal Architecture

Use Cases

Entities

Controllers

P
re

se
n

te
rs

Tests
G

atew
ays

D
BW

eb

U
I

DevicesTest Runners

Hexagonal Architecture

User-side Adapters

User-side Ports

Server-side Ports

Server-side Adapters

Application Core

Technologies

Users

http://www.optivem.com

www.optivem.com | 56

Architectural Equivalence

Hexagonal Architecture

User-side Adapters

User-side Ports

Server-side Ports

Server-side Adapters

Application Core

Technologies

Users

Onion Architecture

UI, Tests

Application Services

Domain Services

Infrastructure

Domain Model

Technologies

Users

Clean Architecture

Presenters, Tests

Use Cases

Gateway Interfaces

Gateways

Entities

Technologies

Users

System under Test (SUT)

SUT Tests

SUT API

Shared Dependency Interfaces

Shared Dependency Implementations

SUT Implementation

Technologies

Users

http://www.optivem.com

www.optivem.com | 57

Acceptance Testing - Tests acting as the Users

Benefit: we can run acceptance tests at the unit level through the use case ports, like the user!
Much faster feedback & scenario coverage at the unit level

Acceptance Testing - Unit Level

Unit Tests execute use cases

Shared dependencies are substituted

with test doubles

Acceptance Testing - E2E Level

UI Automation runners execute use cases

Shared dependencies are substituted with

real implementations

http://www.optivem.com

www.optivem.com | 58

Test Pyramid Summary

Unit Testing

Integration Testing

System Testing

SUT Tests

SUT API

Shared Dep. Interfaces

Shared Dep. Implementations

SUT Implementation

Technologies

Shared Dep. Tests

Shared Dep. Interfaces

Shared Dep. Implementations

Technologies

SUT Tests

SUT API

Shared Dep. Interfaces

Shared Dep. Test Doubles

SUT Implementation

http://www.optivem.com

www.optivem.com | 59

Conclusion

✔

Tests should be executable requirement specs… not implementation specs

Tests should be coupled to the API… not the implementation

Tests should be coupled to behaviour… not to structure

Clean Architecture exposes use cases, we can test the application behaviour

Refactoring does not change behaviour, does not affect behavioural tests

Behavioural tests are more robust and have lower test maintenance cost

http://www.optivem.com

www.optivem.com | 60

Thank You
Valentina Cupać @ Optivem

Connect or follow me on LinkedIn to learn
more about TDD and Clean Architecture

https://www.linkedin.com/in/valentinacupac/
E valentina.cupac@optivem.com

W www.optivem.com

http://www.optivem.com
https://www.linkedin.com/in/valentinacupac/

