
Best practices for building
large GWT applications

Heiko Braun <hbraun@redhat.com>

About me

• Heiko Braun

• Senior Software Engineer JBoss / Red Hat

• 4 years JBoss, 12 years industry

• Focus on SOA, BPM, GWT

• Contributor:
JBossWS, jBPM, Riftsaw, Errai, SAM, Savarra

> http://jboss.org

Topics

• What is GWT?

• Decomposing a large GWT application

• Introducing project Errai

What is GWT?

Google Web Toolkit

• Write AJAX apps in the Java language, then compile to
optimized JavaScript

• SDK: API, Compiler, Hosted Mode Browser

• Edit Java code, then view changes immediately without
re-compiling

• Step through live AJAX code with your Java debugger

• Compile and deploy optimized, cross-browser
JavaScript

> http://code.google.com/webtoolkit/

GWT Features

• Communicate with your server through really simple RPC

• Reuse UI components across projects

• Use other JavaScript libraries and native JavaScript code

• Localize applications

• Choice of development tools

• Test your code with JUnit

• Open Source

Decomposing large
GWT applications

Example: JBoss SOA tooling

Challenge #1:Feature Set

• Different features per:

• Target runtime

• Development stage

• Project lifecycle

• Target audience

Solution #1:
Compile-time composition

• Leverage Maven dependency sets

• Using Deferred Binding

• Create and select a specific implementation
of a class

• Either using Replacement or Generators

Solution #1:
Compile-time composition

(1) ‘mvn -Dconsole.profile=drools install’

(2) Properties file or annotations

(3) Deferred Binding Generator

Limitation #1:
Component interplay

• Each plugin component isolated

• No interplay possible

• It would introduce dependencies

• Grouping by functionality vs. usability

• Conceptual split not necessarily technical
split

Challenge #2: Coupling
between components

Challenge #2: Coupling
between components

• Components “decorate” functionality

• i.e. Process Management & Reporting

• Dependencies may come and go

• Different feature set:
- Maturity (CR vs. GA)
- Environment (staging vs. production)
- Profiles (custom composition)

Solution #2: MVC

• Model-View-Controller ?

• Less coupled

• Still compile-time dependencies

(1) Model changed

(2) Update View

Solution #2: Pub/Sub

• Messaging through publish / subscribe

• Messaging API only shared
dependency

• Notion of “presence”

(1) Publish messages

(2) Subscribe Listener

Limitation #2: Pub/Sub

• Decoupling through de-typed nature

• No compile-time checking

• Exchange protocol (contract) not “visible”

• Choreography validation?

Challenge #3:
UI Components coupled to

services

• I.e. Email client requires SMTP service

• Services may come and go:

• SOA promise

• Different product versions

• Target runtime derivations

Solution #3: Bootstrap

• Bootstrap: “Give me a list of
capabilities”

• Usually RPC call when app starts

• Problem: Fixed initialization point

• Lazy Components?

(1) Client UI starts, request server status

(2) PluginInfo (type, available)

Solution #3: Messaging w. Presence

• Presence: “Need a plumber. Please call XYZ”

• Relies on messaging bus behind the scenes

• Async, independent, durable

(1) Client: Seek capability

(2) Provider: Offer capability

Introducing Project Errai

Project Errai

• Consolidates JBoss GWT efforts

• Tackles the problems described earlier

• Both R&D and actual product development

• Main components:

• Message Bus, Workspace framework,
Widget library

> http://jboss.org/errai

Errai-Bus
• Backbone to application

design

• Common architecture
across client&server

• Enables federated
architecture

• Asynchronous messaging
(pub/sub)

• Conversational

• Both GWT and Javascript
API (OpenHub Spec)

Errai-Bus API:
Common to client & server

(1) Client: Publish

(2) Server: Subscribe

Pub/Sub roles vs. tiers

• client-client across server (chat server)

• client-client w/o server (inter component)

• client-server (client send)

• server-client (server push)

Workspace framework

• UI environment for which to deploy your console

• Provides development infrastructure, documentation and
examples:
- Tear down barriers, ease of use

• Common, shared services, i.e:
- Authentication & Authorization
- Logging & Exception handling

• Allows toolset composition at various stages:
- Sandbox, Project, Product

Workspaces API

(1) Component declaration

• Handles loading, initialization and access to tools

• Uses Deferred Binding as well

(2) Automatic workspace assembly

Errai Widgets

• Complements OSS offering (i.e. Mosaic)

Putting it all together
• Baseline for JBoss SOA

tooling

• Free composition of
console components

• Different projects
provide management
tools

• Mix and match with
3rd party elements

Demo Applications

Q&A

> http://jboss.org/errai
> http://errai-blog.blogspot.com/

