
Michael Dürig Senior Developer

michael.duerig@day.com

Agile RESTful Web Development

Michael Marth Technology Evangelist
michael.marth@day.com

mailto:david.nuescheler@day.com
mailto:david.nuescheler@day.com
mailto:david.nuescheler@day.com
mailto:david.nuescheler@day.com
mailto:david.nuescheler@day.com
mailto:david.nuescheler@day.com
mailto:david.nuescheler@day.com
mailto:david.nuescheler@day.com


Jugs - Agenda

REST in 15 minutes
Meet Apache Sling
demo & code



What is REST?

A API

D Architectural StyleC SOAP’s arch enemy

B Technology



REST: An Architectural Style

One of many Architectural Styles

Architectural principles of the 
web, defined a posteriori

Defined through architectural 
constraints

Roy T. Fiel
ding

Chief Scientist at Day Software



Styles and implementation 
examples

peer to peer style

Napster The Web

REST style

the web is the only
relevant 

implementation of 
REST



REST ingredients

Resources
Representations of resources
Uniform interface
Hypertext and links
Stateless communication

roughly the 

constraints 

from Roy’s thesis



Resources

give all relevant things an ID

http://example.com/cars/models/320don’t have to be pretty

Representations
http://example.com/cars/models/320.html
http://example.com/cars/models/320.json
http://example.com/cars/models/320.xml

 
 
 

http://example.com/cars/models/320.jsp

http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320
http://example.com/cars/models/320


Uniform interface

GET retrieve information, possibly 
cached

PUT Update or create with known ID

POST Create or append sub-resource

DELETE Logically remove

allows 

intermediaries to 

understand (caches, 

proxies)



allows 

intermediaries to 

understand (caches, 

proxies)

GET retrieve information, possibly 
cached

PUT Update or create with known ID

POST Create or append sub-resource

DELETE Logically remove

Uniform interface
check out the URL

http://www.youtube.com/watch?
v=oHg5SJYRHA0

with method “WATCH”

http://www.youtube.com/watch?v=oHg5SJYRHA0
http://www.youtube.com/watch?v=oHg5SJYRHA0
http://www.youtube.com/watch?v=oHg5SJYRHA0
http://www.youtube.com/watch?v=oHg5SJYRHA0


Hypertext

Link the “things” / the resources

<link rel="some-concept" ref="/some-uri">

How?

hardcoded in client NOT hardcoded in client

Why?



A special browser for each web site?

e.g. a Wikipedia browser that hardcodes
http://en.wikipedia.org/wiki/{concept}

wikipedia
browser

amazon
browser

jugs.ch
browser

blogs
browser

nzz
browser

admin.ch
browser

search.ch
browser

infoq
browser

facebook
browser

gmail
browser

http://en.wikipedia.org/wiki/%7B
http://en.wikipedia.org/wiki/%7B


A REST API must not define fixed 
resource names or hierarchies (an obvious 
coupling of client and server). Servers 
must have the freedom to control their 

own namespace.



If you need this
it’s (probably) not REST



requests are self-contained

Stateless communication

state is kept on the client, no server-side application state

client server
GET /customer/1234/orders

update software
reboot

POST /orders/123456789

<link rel=”...” ref=” /orders/123456789”></link>

intermediaries

scalability



RPC-style modelling vs.
REST-style modelling

+ getOrders()
+ submitOrder()
+ getOrderDetails()
+ getOrdersForCustomers()
+ updateOrder()
+ addOrderItem()
+ cancelOrder()

OrderManagementService

+ getCustomers()
+ addCustomer()
+ getCustomerDetails()
+ updateCustomer()
+ deleteCustomer()

CustomerManagementService

GET
PUT
POST
DELETE

<<interface>>
Resource

GET - list all orders
PUT - unused
POST - add new order
DELETE - unused

/orders

GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

/orders/{id}

GET - list all customers
PUT - unused
POST - add new customer
DELETE - unused

/customers

GET - get customer details
PUT - update customer
POST - unused
DELETE - delete customer

/customers/{id}

GET - get all orders for customer
PUT - unused
POST - add order
DELETE - cancel all customer orders

/customers/{id}/orders

GET - unused
PUT - unused
POST - submit order
DELETE - unused

/orders/{id}/submit

many operationsfew instances
few operations

many instances



Why again?
proven scalability
proven to evolve
proven cross-platform The Web

Relevant for me?



REST for the Enterprise?



The Internet vs. The Enterprise

The other is a worldwide, publicly accessible 
series of interconnected computer networks 
that transmit data by packet switching using 
the standard Internet Protocol (IP).

One is a gigantic, uncontrollable anarchy of 
heterogeneous systems with varying quality 
that evolve independently and constantly get 
connected in new and unexpected ways.

Stefan Tilkov - Pragmatic Introduction to REST



Jugs - Agenda

REST in 15 minutes
Meet Apache Sling
demo & code



What’s Sling?

“Apache Sling is a RESTful web framework 
that uses a Java Content Repository to 
store and manage content.”

 in Apache incubator

just graduated



What’s JCR?

“The API should be a standard, 
implementation independent, way to 
access content bi-directionally on a 
granular level within a 
content repository.” ?



Best of both worlds.

data base filesystem

content repository

read

write

hier-archies
streams

locking accesscontrol

integrity structure

tx query

un-structured
“full-text” sort

order
version

ing
obser-
vation

multi-value



“Data First!”
JCR supports “structure first” as well. (but that’s missing the point)

aka “schemaless”



Known compliant Repositories

Apache Jackrabbit Oracle XML DB
Exo 

ECMS Platform
Microsoft 

Sharepoint OpenText Livelink

Day CRX IBM FileNet P8 Xythos Repository Alfresco ECM Vignette V7

Interwoven 
Repository IBM CM EMC Documentum

How many

RDBMS vendors

do you need?+hundreds of TCKsregistered

* *

*

*

* using third party connector

*



Sourcemix 
Sourcemix

Percussion 
Rhythmix Lutece 

Portal

QuickWCM 
WCMS

Jahia 
Framework

Hippo 
CMS

InfoQ 
Online CommunityNuxeo ECM

Sakai 
E-learning

TYPO3 
v5.0 WCMGX WebManager

Exo 
ECMS Platform

Liferay 
Enterprise Portal

Artifactory 
Maven Proxy

IBM FileNet 
WebSiteManagerApache James

medic-2-medic 
mapofmedicine

Day Communiqué 
WCMS

Apache Tapestry

Day Communique 
Collab

QSLabs 
ComplianceApache 

Cocoon

Alfresco ECMS
Apache Sling

Mindquarry 
Collaboration

Day Communique 
DAMmagnolia WCMS

JBoss Portal

Some known JCR Applications

Sun 
OpenPortal Interface 21 

Spring Framework

Fast 
Enterprise SearchOracle PortalBEA Portal



Sourcemix 
Sourcemix

Percussion 
Rhythmix Lutece 

Portal

QuickWCM 
WCMS

Jahia 
Framework

Hippo 
CMS

InfoQ 
Online CommunityNuxeo ECM

Sakai 
E-learning

TYPO3 
v5.0 WCMGX WebManager

Exo 
ECMS Platform

Liferay 
Enterprise Portal

Artifactory 
Maven Proxy

IBM FileNet 
WebSiteManagerApache James

medic-2-medic 
mapofmedicine

Day Communiqué 
WCMS

Apache Tapestry

Day Communique 
Collab

QSLabs 
ComplianceApache 

Cocoon

Alfresco ECMS
Apache Sling

Mindquarry 
Collaboration

Day Communique 
DAMmagnolia WCMS

JBoss Portal

Some known JCR Applications

Sun 
OpenPortal Interface 21 

Spring Framework

Fast 
Enterprise SearchOracle PortalBEA Portal



JCR - Weatherforecast

-5°
2009 2010

-8°
2011

-12°



JCR 2.0 

 http://www.day.com/jsr283

http://www.day.com/jsr283
http://www.day.com/jsr283
http://www.day.com/jsr283


Repository

A node is a resource

GET /cars/audi/s4.txt

User-agent



POST /cars/audi/s48

Repository

A node is a resource

User-agent Your content is your web server

write



Repository

Web apps and Sling scripting

/cars/audi/s4.details.html

User-agent



Repository

Web apps and Sling scripting

/cars/audi/s4.details.html

User-agent

1 file needed

 Convention over configuration



Repository

Web apps and Sling scripting

/cars/audi/s4.details.html

User-agent

.esp

.erb

.scala



/product.jsp?id=/audi/s4

Web apps and Sling scripting

/cars/audi/s4.details.html

URLs do matter!

vs.

Addressing the “script”
Passing in “this”(the resource)



Bonus



Sling

Apache Felix
OSGi container

Sling is OSGi-based

SlingSling

my
bundles

my
scripts

extensible

JCR

my
bundles

(not just “enabled”)



Apache Felix
OSGi container

Sling is OSGi-based

SlingSling

my
bundles

my
scripts

modular

extensible

JCR

my
bundles

hot deploy

Sling

(not just “enabled”)



SEE



DEMO


