
.NET Framework and C#.NET Framework and C#

Anders HejlsbergAnders Hejlsberg
Distinguished EngineerDistinguished Engineer
MicrosoftMicrosoft

Zurich, May 28, 2001Zurich, May 28, 2001

The .NET FrameworkThe .NET Framework

Base Class Library

Common Language Specification

Common Language Runtime

ADO.NET and XML

VB C++ C#
V

isu
al S

tu
d

io
.N

E
T

ASP.NET

JScript …

Windows
Forms

The .NET FrameworkThe .NET Framework

 Simplifies application developmentSimplifies application development
 No COM plumbing, OOP, interoperabilityNo COM plumbing, OOP, interoperability

 Based on web standards / practicesBased on web standards / practices
 Robust execution environmentRobust execution environment

 GC, exceptions, type-safety, securityGC, exceptions, type-safety, security

 Multiple programming languagesMultiple programming languages
 Easy deployment and managementEasy deployment and management

 Zero impact install, side-by-sideZero impact install, side-by-side

 Standards work in progressStandards work in progress

Base Class LibraryBase Class Library

 Data types, conversions, formattingData types, conversions, formatting
 Collections: ArrayList, Hashtable, etc.Collections: ArrayList, Hashtable, etc.
 Globalization: Cultures, sorting, etc.Globalization: Cultures, sorting, etc.
 I/O: Binary and text streams, files, etc.I/O: Binary and text streams, files, etc.
 Net: HTTP, TCP/IP sockets, etc.Net: HTTP, TCP/IP sockets, etc.
 Reflection: Metadata and IL emitReflection: Metadata and IL emit
 Security: Permissions, cryptographySecurity: Permissions, cryptography
 Text: Encodings, regular expressionsText: Encodings, regular expressions

Windows FormsWindows Forms

 Combines VB forms and MFCCombines VB forms and MFC
 Delegation as well as subclassingDelegation as well as subclassing

 Advanced featuresAdvanced features
 Visual forms inheritance, automatic layoutVisual forms inheritance, automatic layout
 Advanced graphics support – GDI+Advanced graphics support – GDI+
 Easy access to Win32 ® APIEasy access to Win32 ® API

 Controls can be hosted in IE 5.xControls can be hosted in IE 5.x
 No installation, registration or GUIDsNo installation, registration or GUIDs

 Code access securityCode access security

ADO.NET and XMLADO.NET and XML

 Consumes all types of dataConsumes all types of data
 XML (hierarchical), RelationalXML (hierarchical), Relational

 Powerful in-memory data cache Powerful in-memory data cache
 Lightweight, stateless, disconnectedLightweight, stateless, disconnected
 Supports both relational and XML accessSupports both relational and XML access
 High-perf, low overhead stream accessHigh-perf, low overhead stream access

 Great XML support including: Great XML support including:
 W3C DOM, XSL/T, XPath, and SchemaW3C DOM, XSL/T, XPath, and Schema

ASP.NETASP.NET

 Rich page architectureRich page architecture
 Web Forms, Web ControlsWeb Forms, Web Controls

 Great Web Services supportGreat Web Services support
 Compiled languagesCompiled languages
 Easier to deployEasier to deploy
 Enhanced reliability and availabilityEnhanced reliability and availability
 Improved performance and scalabilityImproved performance and scalability
 Automatic multiple client supportAutomatic multiple client support

 DHTML, HTML 3.2, WML, small devicesDHTML, HTML 3.2, WML, small devices

Multi-Language PlatformMulti-Language Platform

 The .NET Platform is Language NeutralThe .NET Platform is Language Neutral
 All .NET languages are first class playersAll .NET languages are first class players
 You can leverage your existing skillsYou can leverage your existing skills

 CLR = Union of language featuresCLR = Union of language features
 CLS = Intersection of language featuresCLS = Intersection of language features
 Microsoft is providingMicrosoft is providing

 VB, C++, C#, JscriptVB, C++, C#, Jscript

 Industry and academiaIndustry and academia
 APL, COBOL, Eiffel, Fortran, Haskell, ML, APL, COBOL, Eiffel, Fortran, Haskell, ML,

Perl, Python, Scheme, Smalltalk, …Perl, Python, Scheme, Smalltalk, …

StandardizationStandardization

 CLI and C# submitted to ECMACLI and C# submitted to ECMA
 Proposal adopted at ECMA TC39 meeting Proposal adopted at ECMA TC39 meeting

in September 2000in September 2000
 Co-sponsored by Intel, Hewlett-PackardCo-sponsored by Intel, Hewlett-Packard

 Common Language InfrastructureCommon Language Infrastructure
 Based on .NET Common Language Based on .NET Common Language

Runtime and Class LibrariesRuntime and Class Libraries
 Layered into increasing levels of Layered into increasing levels of

functionalityfunctionality

C# – The Big IdeasC# – The Big Ideas

 The first component oriented language The first component oriented language
in the C and C++ familyin the C and C++ family

 Everything really is an objectEverything really is an object
 Robustness and durabilityRobustness and durability
 Preserving your investmentPreserving your investment

C# Type SystemC# Type System

 Value typesValue types
 Directly contain dataDirectly contain data
 Cannot be nullCannot be null

 Reference typesReference types
 Contain references to objectsContain references to objects
 May be nullMay be null

int i = 123;int i = 123;
string s = "Hello world";string s = "Hello world";

123123ii

ss "Hello world""Hello world"

C# Type SystemC# Type System

 Value typesValue types
 PrimitivesPrimitives int i; double d;int i; double d;
 EnumsEnums enum State { Off, On }enum State { Off, On }
 StructsStructs struct Point { int x, y; }struct Point { int x, y; }

 Reference typesReference types
 ClassesClasses class Foo: Bar, IFoo {...}class Foo: Bar, IFoo {...}
 InterfacesInterfaces interface IFoo: IBar {...}interface IFoo: IBar {...}
 ArraysArrays string[] a = new string[10];string[] a = new string[10];

 DelegatesDelegates delegate void Empty();delegate void Empty();

StructsStructs

 Like classes, exceptLike classes, except
 Stored in-line, not heap allocatedStored in-line, not heap allocated
 Assignment copies data, not referenceAssignment copies data, not reference
 No inheritanceNo inheritance

 Ideal for light weight objectsIdeal for light weight objects
 Complex, point, rectangle, colorComplex, point, rectangle, color
 int, float, double, etc., are all structsint, float, double, etc., are all structs

 BenefitsBenefits
 No heap allocation, less GC pressureNo heap allocation, less GC pressure
 More efficient use of memoryMore efficient use of memory

Classes and StructsClasses and Structs

 class CPoint { int x, y; ... }class CPoint { int x, y; ... }
struct SPoint { int x, y; ... }struct SPoint { int x, y; ... }

CPoint cp = new CPoint(10, 20);CPoint cp = new CPoint(10, 20);
SPoint sp = new SPoint(10, 20);SPoint sp = new SPoint(10, 20);

1010

2020
spsp

cpcp

1010

2020

CPointCPoint

Unified Type SystemUnified Type System

 Everything is an objectEverything is an object
 All types ultimately inherit from objectAll types ultimately inherit from object
 Any piece of data can be stored, transported, and Any piece of data can be stored, transported, and

manipulated with no extra workmanipulated with no extra work

StreamStream

MemoryStreamMemoryStream FileStreamFileStream

HashtableHashtable doubledoubleintint

objectobject

Unified Type SystemUnified Type System

 BoxingBoxing
 Allocates box, copies value into itAllocates box, copies value into it

 UnboxingUnboxing
 Checks type of box, copies value outChecks type of box, copies value out

int i = 123;int i = 123;
object o = i;object o = i;
int j = (int)o;int j = (int)o;

123123i

o

123123

System.Int32System.Int32

123123j

Unified Type SystemUnified Type System

 BenefitsBenefits
 Eliminates “wrapper classes”Eliminates “wrapper classes”
 Collection classes work with all typesCollection classes work with all types
 Replaces OLE Automation's VariantReplaces OLE Automation's Variant

 Lots of examples in .NET FrameworkLots of examples in .NET Framework
string s = string.Format(string s = string.Format(
 "Your total was {0} on {1}", total, date);"Your total was {0} on {1}", total, date);

Hashtable t = new Hashtable();Hashtable t = new Hashtable();
t.Add(0, "zero");t.Add(0, "zero");
t.Add(1, "one");t.Add(1, "one");
t.Add(2, "two");t.Add(2, "two");

Component DevelopmentComponent Development

 What defines a component?What defines a component?
 Properties, methods, eventsProperties, methods, events
 Integrated help and documentationIntegrated help and documentation
 Design-time informationDesign-time information

 C# has first class supportC# has first class support
 Not naming patterns, adapters, etc.Not naming patterns, adapters, etc.
 Not external filesNot external files

 Components are easy to build Components are easy to build
and consumeand consume

PropertiesProperties

 Properties are “smart fields”Properties are “smart fields”
 Natural syntax, accessors, inliningNatural syntax, accessors, inlining

public class Button: Controlpublic class Button: Control
{{
 private string caption;private string caption;

 public string Caption {public string Caption {
 get {get {
 return caption;return caption;
 }}
 set {set {
 caption = value;caption = value;
 Repaint();Repaint();
 }}
 }}
}}

Button b = new Button();Button b = new Button();
b.Caption = "OK";b.Caption = "OK";
String s = b.Caption;String s = b.Caption;

IndexersIndexers

 Indexers are “smart arrays”Indexers are “smart arrays”
 Can be overloadedCan be overloaded

public class ListBox: Controlpublic class ListBox: Control
{{
 private string[] items;private string[] items;

 public string this[int index] {public string this[int index] {
 get {get {
 return items[index];return items[index];
 }}
 set {set {
 items[index] = value; items[index] = value;
 Repaint();Repaint();
 }}
 }}
}}

ListBox listBox = new ListBox();ListBox listBox = new ListBox();
listBox[0] = "hello";listBox[0] = "hello";
Console.WriteLine(listBox[0]);Console.WriteLine(listBox[0]);

Events Events
SourcingSourcing

 Define the event signatureDefine the event signature

 Define the event and firing logicDefine the event and firing logic

public delegate void EventHandler(object sender, EventArgs e);public delegate void EventHandler(object sender, EventArgs e);

public class Buttonpublic class Button
{{
 public event EventHandler Click; public event EventHandler Click;

 protected void OnClick(EventArgs e) {protected void OnClick(EventArgs e) {
 if (Click != null) Click(this, e); if (Click != null) Click(this, e);
 } }
}}

Events Events
HandlingHandling

 Define and register event handlerDefine and register event handler

public class MyForm: Formpublic class MyForm: Form
{{
 Button okButton;Button okButton;

 public MyForm() {public MyForm() {
 okButton = new Button(...);okButton = new Button(...);
 okButton.Caption = "OK";okButton.Caption = "OK";
 okButton.Click += new EventHandler(OkButtonClick);okButton.Click += new EventHandler(OkButtonClick);
 }}

 void OkButtonClick(object sender, EventArgs e) {void OkButtonClick(object sender, EventArgs e) {
 ShowMessage("You pressed the OK button");ShowMessage("You pressed the OK button");
 }}
}}

AttributesAttributes

 How do you associate information with How do you associate information with
types and members?types and members?
 Documentation URL for a classDocumentation URL for a class
 Transaction context for a methodTransaction context for a method
 XML persistence mappingXML persistence mapping

 Traditional solutionsTraditional solutions
 Add keywords or pragmas to languageAdd keywords or pragmas to language
 Use external files, e.g., .IDL, .DEFUse external files, e.g., .IDL, .DEF

 C# solution: AttributesC# solution: Attributes

AttributesAttributes
public class OrderProcessorpublic class OrderProcessor
{{
 [WebMethod][WebMethod]
 public void SubmitOrder(PurchaseOrder order) {...}public void SubmitOrder(PurchaseOrder order) {...}
}}

[XmlRoot("Order", Namespace="urn:acme.b2b-schema.v1")][XmlRoot("Order", Namespace="urn:acme.b2b-schema.v1")]
public class PurchaseOrderpublic class PurchaseOrder
{{
 [XmlElement("shipTo")] public Address ShipTo;[XmlElement("shipTo")] public Address ShipTo;
 [XmlElement("billTo")] public Address BillTo;[XmlElement("billTo")] public Address BillTo;
 [XmlElement("comment")] public string Comment;[XmlElement("comment")] public string Comment;
 [XmlElement("items")] public Item[] Items;[XmlElement("items")] public Item[] Items;
 [XmlAttribute("date")] public DateTime OrderDate;[XmlAttribute("date")] public DateTime OrderDate;
}}

public class Address {...}public class Address {...}

public class Item {...}public class Item {...}

AttributesAttributes

 Attributes can beAttributes can be
 Attached to types and membersAttached to types and members
 Examined at run-time using reflectionExamined at run-time using reflection

 Completely extensibleCompletely extensible
 Simply a class that inherits from Simply a class that inherits from

System.AttributeSystem.Attribute
 Type-safeType-safe

 Arguments checked at compile-timeArguments checked at compile-time
 Extensive use in .NET FrameworksExtensive use in .NET Frameworks

Unsafe CodeUnsafe Code

 Unsafe codeUnsafe code

 Low-level code without leaving the boxLow-level code without leaving the box

 Enables unsafe casts, pointer arithmeticEnables unsafe casts, pointer arithmetic

 Declarative pinningDeclarative pinning

 Fixed statementFixed statement

 Basically “inline C”Basically “inline C”

unsafe void Foo() {unsafe void Foo() {
 char* buf = stackalloc char[256];char* buf = stackalloc char[256];
 for (char* p = buf; p < buf + 256; p++) *p = 0;for (char* p = buf; p < buf + 256; p++) *p = 0;

}}

Unsafe CodeUnsafe Code

class FileStream: Streamclass FileStream: Stream
{{
 int handle;int handle;

 public unsafe int Read(byte[] buffer, int index, int count) {public unsafe int Read(byte[] buffer, int index, int count) {
 int n = 0;int n = 0;
 fixed (byte* p = buffer) {fixed (byte* p = buffer) {
 ReadFile(handle, p + index, count, &n, null);ReadFile(handle, p + index, count, &n, null);
 }}
 return n;return n;
 }}

 [dllimport("kernel32", SetLastError=true)][dllimport("kernel32", SetLastError=true)]
 static extern unsafe bool ReadFile(int hFile,static extern unsafe bool ReadFile(int hFile,
 void* lpBuffer, int nBytesToRead,void* lpBuffer, int nBytesToRead,
 int* nBytesRead, Overlapped* lpOverlapped);int* nBytesRead, Overlapped* lpOverlapped);
}}

Other C# FeaturesOther C# Features
VersioningVersioning
Multi-dimensional arraysMulti-dimensional arrays
Operator overloadingOperator overloading
User-defined conversionsUser-defined conversions
Variable parameter listsVariable parameter lists
ref and out parametersref and out parameters
Unsigned types (byte, ushort, uint, ulong)Unsigned types (byte, ushort, uint, ulong)
Decimal type (28 digits)Decimal type (28 digits)
Conditional compilationConditional compilation
foreach statementforeach statement
Explicit interface member implementationsExplicit interface member implementations
XML documentation commentsXML documentation comments

