o P

::f:‘-‘; 2

PENET Framework and C#

Anders Hejlsberg
Distinguished Engineer
Microsoft

Zurich, May 28, 2001

JThe .NET Framework

VB C++ C# ' JScript

Common Lanﬂuaﬂe Sgecification ’

Windows
Forms

ASP.NET

ADO.NET and XML

Base Class Library

Common Language Runtime '

TThe .NET Framework

= Simplifies application development
I No COM plumbing, OOP, interoperability

% Based on web standards / practices

® Robust execution environment
0 GC, exceptions, type-safety, security.
= Multiple programming languages
= Easy deployment and management
U Zero impact install, side-by-side
= Standards work in progress

Base Class Library

Data types, conversions, formatting
Collections: ArrayList, Hashtable, etc.
Globalization: Cultures, sorting, etc.
I/O: Binary and text streams, files, etc.
Net: HTTP, TCP/IP sockets, etc.
Reflection: Metadata and IL emit
Security: Permissions, cryptography.
Text: Encodings, regular expressions

Windows Forms

% Combines VB forms and MFC

LI Delegation as well as subclassing

= Advanced features
U Visual forms inheritance, automatic layout
b Advanced graphics support — GDI*
L Easy access to Win32 ® API

® Controls can be hosted in IE 5.x
U No installation, registration or GUIDS

® Code access security

ADONET and XML

® Consumes all types of data
t XML (hierarchical), Relational

= Powerful in-memory data cache
U Lightweight, stateless, disconnected
L Supports both relational and XML access
U High-perf, low overhead stream access

" Great XML support including;
0 W3C DOM, XSL/T, XPath, and Schema

ASP.NET

% Rich page architecture
L Web Forms, Web Controls

Great Web Services support
Compiled languages

Easier to deploy

Enhanced reliability and availability
Improved performance and scalability

Automatic multiple client support
O DHTML, HTML 3.2, WML, small devices

Multi=-Canguage Platform

% The .NET Platform is Language Neutral
dAll .NET languages are first class players
U You can leverage your existing skills

® CLR = Union of language features
" CLS = Intersection of language features
® Microsoft is providing
0 VB, C++, C#, Jscript
" Industry and academia

O APL, COBOL, Eiffel, Fortran, Haskell; ML;
Perl, Python, Scheme, Smalltalk; ...

Standardization

% CLIand C# submitted to ECMA

Ll Proposal adopted at ECMA TC39 meeting
in September 2000

- Co-sponsored by Intel, Hewlett-Packard

% Common Language Infrastructure

0 Based on .NET Common Language
Runtime and Class Libraries

U Layered into increasing levels of
functionality

C# — Ihe Big Ideas

" The first component oriented language
in the C and C++ family

= Everything really is an object
® Robustness and durability
" Preserving your investment

CHype System

" Value types

L Directly contain data
t Cannot be null

% Reference types

L Contain references to objects
O May be null

int 1 = 123;
string s = "Hello world";

i 123

S . » "Hello world"

CHype System

" Value types

L Primitives int i; double d;

U Enums enum State { Off, On }

U Structs struct Point { int x, y; }
® Reference types

L Classes class Foo: Bar, IFoo {...}

L Interfaces interface IFoo: IBar {...}

U Arrays string[] a = new string[10];

L]

Delegates delegate void Empty()s;

Structs

" Like classes, except
LI Stored in-line, not heap allocated
U Assignment copies data, not reference
" No inheritance

" |deal for light weight objects
L Complex, point, rectangle, color
U int, float, double, etc., are all structs

" Benefits
' No heap allocation, less GC pressure
L More efficient use of memory

Classes and Structs

class CPoint { int x, vy; ... }
struct SPoint { int x, y; ... }
CPodint cp = new CPoint(10, 20);
SPoint sp = new SPoint(10, 20);
10
Sp
20
Cp . > . » CPodnit

10
20

Unified Tiype System

= Everything is an object
0 All'types ultimately inherit from object

00 Any piece of data can be stored, transported, and
manipulated with no extra work

object
Stream Hashtable int double

!t i€

MemoryStream FileStream

Unified Tiype System

" Boxing
L Allocates box, copies value into it
® Unboxing
- Checks type of box, copies value out
int 1 = 123;

object o = 1;
int j = (int)o;

i 123

o ° T8 » System. Int32

j 123 123

Unitied Type System

" Benefits
L Eliminates “wrapper classes”
L Collection classes work with all types
L Replaces OLE Automation’s Variant

" | ots of examples in .NET Framework

string s = string.Format(
"Your total was {0} on {1}", total, date);

Hashtable t = new Hashtable();
t.Add (0, "zero");
t.Add(1, "one");
t.Add(2, "two");

Component Development

" What defines a component?
Lt Properties, methods, events
L Integrated help and documentation
U Design-time information

® C# has first class support
U Not naming patterns, adapters, etc.
L Not external files

® Components are easy to build
and consume

Properties

" Properties are “smart fields”
' Natural syntax, accessors, Inlining

public class Button: Control

{

private string caption;

public string Caption {

get {
return caption;

¥
set {
caption = value;
Repaint(); Button.b = new Button();
} b.Caption = "0K";
} String s = b.Caption;

}

Indexers

" |Indexers are “smart arrays”
L Can be overloaded

public class ListBox: Control

{

private string[] items;

public string this[int index] {

get {
return items[index];

¥
set {
items[index] = value; _ _)
Repaint(); L}stBox listBox = new ListBox();
1 ListBox[0] = "hello";
} Console.WriteLine/(listBox|[0]);

}

EVEents
Sourcing

% Pefine the event signature

public delegate void EventHandler(object sender, EventArgs e);

" Define the event and firing logic

public class Button

{

public event EventHandler Click;

protected void OnClick(EventArgs e) {
1f (Click '= null) Click(this, e):
¥
¥

EVents
Handling

% Define and register event handler

public class MyForm: Form

{
Button okButton;

public MyForm() {
okButton = new Button(...);
okButton.Caption = "OK";
okButton.Click += new EventHandler(OkButtonClick):

}

void OkButtonClick(object sender, EventArgs e) {
ShowMessage (*You pressed the OK button™);

s
¥

Attibutes

" How do you associate information with
types and members?

L Documentation URL for a class
L Transaction context for a method
U XML persistence mapping

® Traditional solutions

U Add keywords or pragmas to language
L Use external files, e.qg., .IDL, .DEF

® C# solution: Attributes

Attiibutes

public class OrderProcessor

{
[WebMethod]

public void SubmitOrder(PurchaseOrder order) {...}

}

[XmlRoot (“Order”, Namespace="urn:acme.b2b-schema.vl")]
public class PurchaseOrder

{
[XmLElement (“shipTo®)] public Address ShipTo;
[XmLElement ("billTo")] public Address BillTo;
[XmLE Lement (“comment®)] public string Comment;
[XmLElement (“1items®)] public Item[] Items;
[XmUAttribute(“date™)] public Datelime OrderDate;
I

public class Address {...}

public class Item {...}

Attibutes

" Attributes can be

L Attached to types and members
' Examined at run-time using reflection

® Completely extensible

U Simply a class that inherits from
System.Attribute

" Type-safe
L Arguments checked at compile-time
® Extensive use in .NET Frameworks

Unsafe Code

= Unsafe code
- Low-level code without leaving the box
- Enables unsafe casts, pointer arithmetic
» Declarative pinning
- Fixed statement
= Basically “inline C”

unsafe void Foo() {
char* buf = stackalloc char[256];

for (char* p = buf; p < buf + 256; p++) *p

0;

Unsafe Code

class FileStream: Stream

{

int handle;

public unsafe int Read(byte[] buffer, int index, int count) {
int n = 0;
fixed (byte* p = buffer) {
ReadFile(handle, p + index, count, &n, null);

¥

return n;

¥

[dilimport ("kernel32", SetlLastError=true)]
static extern unsafe bool ReadFile(int hFile,
void* LpBufifer, int nBytesloRead,
int* nBytesRead, Overlapped* LpOverlapped);

Other C# Features

Versioning

Multi-dimensional arrays

Operator overloading

User-defined conversions

Variable parameter lists

ref and out parameters

Unsigned types (byte, ushort, uint, ulong)
Decimal type (28 digits)

Conditional compilation

foreach statement

Explicit interface member implementations
XML documentation comments

