
Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Patterns
Architecture and Applications with EJB

Markus Völter, Oliver Stuch
MATHEMA AG

{markus.voelter|oliver.stuch}@mathema.de

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Roadmap

Patterns and Pattern Languages
Basic Principles
Core Patterns

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Patterns and Pattern
Languages

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Patterns and Pattern Languages

patterns have become part of the mainstream

patterns for software design

patterns for software architecture

organizational patterns

pedagogical patterns

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

What is a pattern?

Forces

Problem

Solution

Structure

QWAN

Each pattern is a three-part rule, which expresses
a relation between a certain context, a certain
system of forces which occurs repeatedly in that
context, and a certain software configuration
which allows these forces to resolve themselves.

Jim Coplien

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

What is a pattern language?

Systematic collection of patterns

Has a language-wide goal

Is generative in nature (generates the „whole“)

has to be applied in a specific way

each pattern must define its place in this sequence

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Form of the patterns here

Alexandrian Form

Pattern consists of

Name

Context

Problem

Body

Solution

Resulting Context

Examples

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

This pattern language contains...

architectural and design patterns

Architecture:
The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software components,
the externally visible properties of those
components, and the relationships among them.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Basic Principles

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Separation of Concerns

Problem:
Technology is changing fast.
Your business is changing fast.
The changes happen at different speeds.

Solution:
Separate functional and technical concerns
Implement them separately using different software

artifacts.
Reuse and evolve each of them separately

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Multitier Architecture

Problem:
Enterprise applications should be scalable
They must be simple to deploy
Different user interfaces are required
The data should be stored centrally

Solution:
Split the application system into several layers
Allow remote access to each of these layers
Introduce a specific layer for the business logic

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Core Patterns

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component

Context:
You have Separated Concerns. Functional part is “one chunk”.

Problem:
Your business (requirements) is changing quickly.
Need reuse on enterprise level, i.e. on high granularity level
Want to evolve the parts of your system(s) independently

Solution:
Decompose your application into several components
They do not directly depend on other components
An application consists of loosely coupled components

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component

Component Patterns

Monolithic
Application with
features A, B, C

ComponentA

ComponentB

ComponentC

decompose

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Interface

Context:
You Decomposed functional requirements into Components. Now:

“reassemble” app by letting components collaborate.

Problem:
Components should not depend on other components’ implementations
You do not even want to know how another component is implemented

Solution:
Define public interface to the component
Client accesses a Component using the interface only
Accessing this interface should be standardized

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Interface

Component Patterns

ClientComponent IFComponentB

ComponentB

Component A

IFComponentA1

IFComponentA2

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Container

Context:
You have decided to Separate Concerns.

Problem:
Components contain functional logic

Now you need something for the technical parts

Need to recombine functional and technical requirements into a complete
application.

Solution:
Create a container for the Components.

Responsible to enforce technical requirements on the components

Uses standardized frameworks and other techniques such as code
generation.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Container

Component Patterns

Container

ComponentB

ComponentA

ComponentA

ComponentA

ComponentB

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Bus

Context
You have a Container to host your Components.

Problem
Containers (and therefore, your components) usually reside on different

machines that your client application
You don’t want to depend on te semantics of the underlying transport

protocol.

Solution
Component bus, as logical communication infrastructure
Hide the underlying low-level transport protocol
The Container and the clients are attached to the bus.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Bus

Component Patterns

Client Component

Component Bus

Invocation Data

Invocation

Additional Data

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Distinguish Identities

Context
Your design results in potentially many logical component identities,

especially when you use Entity Components.

Problem
Many logical component instances referenced by clients at the same time
Container will run into resource problems

Solution
Distinguish logical and physical identities
Clients never have a reference to the physical component

instance, they use a Proxy
Container is free to assign physical instances to logical identities

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Distinguish Identities

Component Patterns

Container

Component A

Client

delegates invocation

Proxy A

invocation

Proxy B

reference only

creates instance of
Component B when
invocation arrives

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Lifecycle Callback

Context
Your Components live in a Container and you

 Distinguish Identities.

Problem
Physical component it has to change its logical identity
Component will have to be initialized after birth and it

 needs to return its resources before it dies

Solution
Provide a set of lifecycle callback operations.
The Container calls them whenever it feels it is

 necessary.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Client Library

Context
You are using a Component Bus to access your Components in

the Container.

Problem
The client application needs to access the Component Bus
Needs to know the interfaces of the components
Every method invocation must contain security and other

information
Specific marshalling code may also be necessary

Solution
Create a client library upon Component Installation
Contains all the interfaces, and other generated code

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

C O L L A B O R A T I O N

Component Patterns

Container

Component
A

Client

delegates invocation

Container
Proxy A

invocation

Lifecycle
Callback

Component
Interface A

Client Library

Component
Interface A

Component Bus

Proxy A

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Home

Context
Your application is assembled of collaborating, loosely coupled

components, i.e. one Component uses the services of another
Component.

Problem
A Component needs to find (or create new) instances of other

Components
You might not know the exact procedure to do this
Technical concern: Don’t want that in component code

Solution
For each Component, provide a management interface
It can provide different ways (operations) how to create and

find component instances

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Home

Component Patterns

ComponentA IFComponentB

ComponentB

IFComponentBHome

create..(..) : IFComponentB
find..(..) : IFComponentB

returns

ComponentBHome

create..(..) : IFComponentB
find..(..) : IFComponentB

creates/ finds

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Naming

Context
You have provided a Component Home for your components

to manage the instances of a specific component type. You
are using Managed Resources in the Container.

Problem
To access the Component Home or Managed Resources, you

 need to get the reference of the home or of the service.

Solution
Provide a naming service which maps names to object

references
Can be used uniformly for any kind of

object/component/resource
It can be accessed by clients using a well-known

object reference.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Naming

Component Patterns

Component A
Home

lookup("com/ mycompany/
components/ ComponentA")

Component B
Home

Ressource X

Ressource Y

Naming

com
 mycompany
 components
 ComponentA
 ComponentB
 resources
 ResourceX
 ResourceY

Client

Component A Home

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

C O L L A B O R A T I O N

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Annotations

Context
You have implemented a Container. Programmer programs functional

aspects only.

Problem
Programmers will need a way to control the behavior of the components

in the Container
You need a way to tell the Container how it should handle certain aspects

Solution
Allow the developer to annotate the components
The Container is free to implement the Annotations
Uses standardized frameworks and other techniques such as code

generation.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Installation

Context
You express your technical requirements regarding a

Component using Annotations and the Container provides a way
to implement these.

Problem
Annotations state technical concerns declaratively
Code required to realize these at runtime
Consistency has to be checked in advance

Solution
Include an explicit installation step for Components
Provide your Component’s code and the Annotations to

the Container, Container creates necessary code

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Interception

Context
You have created a Container which serves as a place to live for

the Components. You use Annotations to tell the Container how
it should handle a Component. You use the concept of
Distinguishing Identities.

Problem
Container has to implement the behaviour specified in the

Annotations
How can a Container insert specific code into prebuilt

Components

Solution
Allow the Container to intercept any request before it

reaches the destination Component
Provide a standardized interface for interceptors.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Context

Context
Your application is decomposed into Components which are

executed in a Container.

Problem
Components need to access resources outside of itself (in

the Container).
Need to control some aspects of the Container (e.g. Tx

state)

Solution
Supply each component instance with a Component

Context at the beginning of its lifecycle
Context provides operations, with which the

Component can access the environment

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Component Context

Component Patterns

Container

ComponentA

Naming Databases

Services

Instance Pool

Cache

Context

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Configuration Parameters

Context

You want to reuse your Components. To achieve reuse, you
need a certain degree of variability in your Component
implementation.

Problem
you need a way to “pass (configuration) information to the

Component”
This information must be accessible from within the

Component
Solution

The Component Context should allow the Component
to access configuration parameters

defined for the Component during Component
Installation.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Instance Pooling

Context
You run your Components in a Container. You Distinguish Identities and

provide Lifecycle Callbacks operations in your Component.

Problem
Physical instance creation in the Container is expensive.
It is therefore useful to minimize the number of creations and destructions
especially in the case of Entity Components

Solution
Use instance pooling together with Lifecycle Callbacks
Keep a number of component instances ready
Let them “become” different logical instances at different times.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Passivation

Context
You run your Components in a Container. You Distinguish

Identities and provide Lifecycle Callbacks operations in your
Component.

Problem
Session Components need to be accessible as long as a client

does not destroy them
They might not be used for a very long time in between

invocations

Solution
Allow the Container to remove unused Component

instances temporarily from memory
Attributes are stored persistently and are reloaded upon

reactivation.

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Managed Resource

Context
You run your Components in a Container, and they can access

parts of the world outside using a Component Context.
Problem

Components will need to access several external resources
You do not know, how many physical component instances you

will have
You do not want to limit the portability of your components by

depending on the type or location of a specific resource
Solution

Let the Container manage resources
It creates pools for every configured resource
Access Managed Resources in Naming using logical

names only
Let the Container do the mapping to real Naming name

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Invocation Context

Context
You are using a Container to take care of the technical requirements.

Among other things, the Container’s job to manage transactions and
security.

Problem
Container needs to know more than just the name of the invoked

method and the arguments when an operation is called
This cannot be supplied with a normal method call

Solution
Include an invocation context with each operation
It can be inserted or created by using Interception
The context can include any kind of information, only the

Container must know how to handle it

Component Patterns

Component Patterns – Architecture and Applications with EJB © 2001 MATHEMA AG

Thank you...
Questions,
Critique ?

Component Patterns

