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Roadmap

Patterns and Pattern Languages
Basic Principles
Core Patterns

Component Patterns



Component Patterns – Architecture and Applications with EJB   © 2001 MATHEMA AG

Patterns and Pattern 
Languages

Component Patterns



Component Patterns – Architecture and Applications with EJB   © 2001 MATHEMA AG

Patterns and Pattern Languages

patterns have become part of the mainstream

patterns for software design

patterns for software architecture

organizational patterns

pedagogical patterns
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What is a pattern?

Forces

Problem

Solution

Structure

QWAN

Each pattern is a three-part rule, which expresses 
a relation between a certain context, a certain 
system of forces which occurs repeatedly in that 
context, and a certain software configuration 
which allows these forces to resolve themselves.

Jim Coplien
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What is a pattern language?

Systematic collection of patterns

Has a language-wide goal

Is generative in nature (generates the „whole“)

has to be applied in a specific way

each pattern must define its place in this sequence
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Form of the patterns here

Alexandrian Form

Pattern consists of

Name

Context

Problem

Body

Solution

Resulting Context

Examples
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This pattern language contains...

architectural and design patterns

Architecture:
The software architecture of a program or 
computing system is the structure or structures of 
the system, which comprise software components, 
the externally visible properties of those 
components, and the relationships among them.
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Basic Principles
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Separation of Concerns

Problem:
Technology is changing fast. 
Your business is changing fast. 
The changes happen at different speeds.

Solution:
Separate functional and technical concerns 
Implement them separately using different software 

artifacts. 
Reuse and evolve each of them separately 
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Multitier Architecture

Problem:
Enterprise applications should be scalable 
They must be simple to deploy 
Different user interfaces are required
The data should be stored centrally 

Solution:
Split the application system into several layers 
Allow remote access to each of these layers 
Introduce a specific layer for the  business logic
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Core Patterns
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Component

Context:
You have Separated Concerns. Functional part is “one chunk”. 

Problem:
Your business (requirements) is changing quickly.
Need reuse on enterprise level, i.e. on high granularity level 
Want to evolve the parts of your system(s) independently

Solution:
Decompose your application into several components
They do not directly depend on other components 
An application consists of loosely coupled components 
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Component

Component Patterns

Monolithic
Application with
features A, B, C

ComponentA

ComponentB

ComponentC
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Component Interface

Context:
You Decomposed functional requirements into Components. Now:  

“reassemble” app  by letting  components collaborate. 

Problem:
Components should not depend on other components’ implementations 
You do not even want to know how another component is implemented 

Solution:
Define public interface to the component 
Client accesses a Component using the interface only 
Accessing this interface should be standardized 
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Component Interface

Component Patterns
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Container 

Context:
You have decided to Separate Concerns. 

Problem:
Components contain functional logic

Now you need something for the technical parts 

Need to recombine functional and technical requirements into a complete 
application. 

Solution:
Create a container for the Components. 

Responsible to enforce technical requirements on the components 

Uses standardized frameworks and other techniques such as code 
generation. 
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Container 
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Component Bus

Context
You have a Container to host your Components. 

Problem
Containers (and therefore, your components) usually reside on different 

machines that your client application 
You don’t want to depend on te semantics of the underlying transport 

protocol.

Solution
Component bus, as logical communication infrastructure
Hide the underlying low-level transport protocol
The Container and the clients are attached to the bus.
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Component Bus

Component Patterns
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Distinguish Identities 

Context
Your design results in potentially many logical component identities, 

especially when you use Entity Components.

Problem
Many logical component instances referenced by clients at the same time 
Container will run into resource problems 

Solution
Distinguish logical and physical identities 
Clients never have a reference to the physical component 

instance, they use a Proxy
Container is free to assign physical instances to logical identities
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Distinguish Identities 

Component Patterns
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Lifecycle Callback 

Context
Your Components live in a Container and you 

 Distinguish Identities.

Problem
Physical component it has to change its logical identity 
Component will have to be initialized after birth and it    

 needs to return its resources before it dies 

Solution
Provide a set of lifecycle callback operations. 
The Container calls them whenever it feels it is 

 necessary. 
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Client Library

Context
You are using a Component Bus to access your Components in 

the Container. 

Problem
The client application needs to access the Component Bus 
Needs to know the interfaces of the components 
Every method invocation must contain security and other 

information 
Specific marshalling code may also be necessary

Solution
Create a client library upon Component Installation 
Contains all the interfaces, and other generated code 
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C O L L A B O R A T I O N

Component Patterns
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Component Home 

Context
Your application is assembled of collaborating, loosely coupled 

components, i.e. one Component uses the services of another 
Component.

Problem
A Component needs to find (or create new) instances of other 

Components 
You might not know the exact procedure to do this
Technical concern: Don’t want that in component code

Solution
For each Component, provide a management interface 
It can provide different ways (operations) how to create and 

find component instances 
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Component Home 

Component Patterns
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Naming 

Context
You have provided a Component Home for your components 

to manage the instances of a specific component type. You 
are using Managed Resources in the Container. 

Problem
To access the Component Home or Managed Resources, you

 need to get the reference of the home or of the service.

Solution
Provide a naming service which maps names to object

references 
Can be used uniformly for any kind of 

object/component/resource 
It can be accessed by clients using a well-known 

object reference.

Component Patterns
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Naming 

Component Patterns

Component A
Home

lookup("com/ mycompany/
components/ ComponentA")

Component B
Home

Ressource X

Ressource Y

Naming

com
   mycompany
       components
         ComponentA
         ComponentB
       resources
          ResourceX
          ResourceY

Client

Component A Home
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C O L L A B O R A T I O N
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Annotations

Context
You have implemented a Container. Programmer programs functional 

aspects only. 

Problem
Programmers will need a way to control the behavior of the components 

in the Container 
You need a way to tell the Container how it should handle certain aspects 

Solution
Allow the developer to annotate the components 
The Container is free to implement the Annotations
Uses standardized frameworks and other techniques such as code 

generation. 
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Component Installation 

Context
You express your technical requirements regarding a 

Component using Annotations and the Container provides a way 
to implement these.

Problem
Annotations state technical concerns  declaratively 
Code required to realize these at runtime
Consistency has to be checked in advance

Solution
Include an explicit installation step for Components
Provide your Component’s code and the Annotations to 

the Container, Container creates necessary code

Component Patterns
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Interception 

Context
You have created a Container which serves as a place to live for 

the Components. You use Annotations to tell the Container how 
it should handle a Component. You use the concept of 
Distinguishing Identities.

Problem
Container has to implement the behaviour specified in the

Annotations 
How can a Container insert specific code into prebuilt

Components 

Solution
Allow the Container to intercept any request before it

reaches the destination Component 
Provide a standardized interface for interceptors. 
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Component Context 

Context
Your application is decomposed into Components which are 

executed in a Container. 

Problem
Components need to access resources outside of itself (in 

the Container). 
Need to control some aspects of the Container (e.g. Tx 

state)

Solution
Supply each component instance with a Component 

Context at the beginning of its lifecycle
Context provides operations, with which the 

Component can access the environment

Component Patterns
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Component Context 

Component Patterns
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Naming Databases
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Configuration Parameters 

Context

You want to reuse your Components. To achieve reuse, you 
need a certain degree of variability in your Component 
implementation.

Problem
you need a way to “pass (configuration) information to the 

Component” 
This information must be accessible from within the 

Component
Solution

The Component Context should allow the Component 
to access configuration parameters

defined for the Component during Component 
Installation. 
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Instance Pooling 

Context
You run your Components in a Container. You Distinguish Identities and 

provide Lifecycle Callbacks operations in your Component. 

Problem
Physical instance creation in the Container is expensive. 
It is therefore useful to minimize the number of creations and destructions 
especially in the case of Entity Components

Solution
Use instance pooling together with Lifecycle Callbacks 
Keep a number of component instances ready
Let them “become” different logical instances at different times.

Component Patterns
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Passivation 

Context
You run your Components in a Container. You Distinguish 

Identities and provide Lifecycle Callbacks operations in your 
Component. 

Problem
Session Components need to be accessible as long as a client 

does not destroy them 
They might not be used for a very long time in between

invocations 

Solution
Allow the Container to remove unused Component 

instances temporarily from memory 
Attributes are stored persistently and are reloaded upon 

reactivation. 
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Managed Resource  

Context
You run your Components in a Container, and they can access 

parts of the world outside using a Component Context. 
Problem

Components will need to access several external resources
You do not know, how many physical component instances you 

will have 
You do not want to limit the portability of your components by 

depending on the type or location of a specific resource 
Solution

Let the Container manage resources 
It creates pools for every configured resource 
Access Managed Resources in Naming using logical 

names only
Let the Container do the mapping to real Naming name
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Invocation Context 

Context
You are using a Container to take care of the technical requirements. 

Among other things, the Container’s job to manage transactions and 
security.

Problem
Container needs to know more than just the name of the invoked 

method and the arguments when an operation is called 
This cannot be supplied with a normal method call 

Solution
Include an invocation context with each operation 
It can be inserted or created by using Interception 
The context can include any kind of information, only the 

Container must know how to handle it
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Thank you...
Questions,
Critique ?

Component Patterns


